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PREFACE

A systematic account of the theory and construction
of non-differentiable functions is not found in any
published text book on the theory of functions. Hobson,
in his Theory of Functions of a Real Variable, has given
an account of Knopp’s method of construction of non-
differentiable functions by means of infinite series, but
does not mention geometrical and arithmetical methods
of obtaining such functions. Other text books contain
isolated examples and do not attempt to give any general
theory.

In this summary of a course of four lectures,
delivered at the Lucknow University, my aim has been
to include as comprehensive an account of developments
relating to non-differentiable functions as is possible
within a limited scope of about a hundred pages.
Necessary proofs of the theorems have been given in
some cases. In other cases the reader will have to
consult the original sources cited.

The first lecture contains the history of attempts
made by nineteenth century mathematicians to construct
non-differentiable functions, as well as a brief account
of the general method evolved by Dini of obtaining such
functions in the form of infinite series. A proof of the
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non-differentiability of Weierstrass’s function based on a
method of M. B. Porter has been given. This proof is
simpler and yet more powerful than the one ordinarily
found in text books.

In the second lecture is given an account of several
non-differentiable  functions defined geometrically,
Although some of these functions are multiple-valued
yet they have been included for the sake of their
historical importance, especially as they were originally
given as examples of continuous nowhere differentiable
functions.

The third lecture deals with the history of arith-
metically-defined non-differentiable functions. A detailed
discussion of the derivates of an example constructed by
me in 1924 is included. Two other simple examples
have also been discussed. In one of these the decimal
representation of fractions is used for obtaining the
definition of the function.

The fourth lecture is devoted to the discussion of the
properties of non-differentiable functions, especially with
regard to their oscillating nature and the existence of
cusps and maxima and minima. Some theorems relating
to the derivates of continuous functions, which have a
direct bearing on our subject, have also been included.

A bibliography of original sources cited in the text

is appended at the end. In the body of the book they
are referred to by their serial numbers.
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It is & pleasure to record here my indebtedness to
Dr. Birbal Sahni for asking me to deliver these lectures
and for making their publication possible. My thanks
are also due to my friends and colleagues, Mr. M. L.
Bhatia for preparing the diagrams and Mr. R. D. Misra
for going through the prcofs.

LuckNow UNIVERSITY A. N. Singn.
June 1935.
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FIRST LECTURE
FUNCTIONS DEFINED BY SERIES

1. Early Notions. In to-day’slecture I propose
to deal with the historical aspect of our subject. Non-
differentiable functions have played a great part in the
refinement of our geometrical intuition, and were in
part, if not wholly, responsible for the critical study of
the notion of ‘limit” made by the nineteenth century
mathematicians—a study which resulted in placing mathe-
matical analysis on a sure and sound foundation. Up to
the middle of the mnineteenth century the notion of

“ function ”

was connected with the geometrical notion of
“curve”” defined as the path traced out by a moving

point. This notion of curve implies that—

(¢) The curve is continuous, because the moving
point must pass through every point
between any two points P and Q on the
path;

(3¢) the curve has a determinate tangent at
each point, because a moving point has at
every point of its path a determinate
direction of motion ;

(iii) the arc of the curve between any two points
has a finite length, because the arc is
described in finite time ; and
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(iv) the curve does not make an indefinitely large
number of oscillations in the neighbour-

hood of any point.

Exsmples of functions which could be expressed by a
simple analytical formula, but which did not satisfy one
or more of the above conditions, were known to mathe-
maticians in the early nineteenth century, so that a
definition of function, free from appeal to geometrical
intuition, was a desideratum. Such a definition was
provided by Dirichlet (1805—1859). Analytical defini-
tions of continuity were given by Weierstrass
(1815—1896), Cauchy (1784—1857) and Hankel.
The notion of “ magnitude” was given an analytical
garb by Cantor (1845—1918) and Dedekind (1831 —
1916), who, independently of each other, develaped their
theories of the irrational number. By the help of their
theories it is now possible to interpret all mathematical
processes in terms of arithmetic.

2. Early History of the Calculus. Newton
and Leibnitz are said to have discovered the Differential
Calculus, but their ideas about it were incorrect and hazy.
It is said that Newton did not believe in the results that he
obtained by the help of the calculus until he had proved
the same results by other methods. These mathema-
ticians seem to have stumbled upon a very powerful
tool, the exact nature of which they did net know. While
Newton was suspicious, Leibnitz and his followers made



THE CALCULUS IN INDIA 3

free and sometimes indiscriminate use of the calculus in
all branches of mathematics. So far as the use of the
differential calculus, either as ¢ the rate of flow” or as
¢ the infinitesimal increment '’ is concerned, Newton and
Leibnitz may be said to have made more extensive use
of it than their predecessors, but, certainly, they were
not the first to do so. It is well known that Fermat
(1608—~—1665) had actually obtained the equation of the
tangent in the form

Y—y = Lim Y7Y (X—2).
, r—x
¥y
'z
3. The Calculus in India. The Hindu mathe-
maticians appear to have been familiar with the idea of

the infinitesimal increment” from very early times.
Maiijula (932 A.D.) has given the formula,

d(SinB) = Cos0d9

for the calculation of Sin (0 +060), when Sin 9 is known
and 87 is small. Bhiskardcarya (1150 A.D.) uses the
term tdtkdlikagati to denote the infinitesimal increment,
and has applied the conception to the evaluation of the
instantaneous velocity of the moon and planets, and to a
problem of maxima and minima, stating that the infini-
tesimal increment at a maximum is zero. Nilakantha
(c. 1500 A. D.) has shown that the increment of the
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increment of Sin 0 varies as — Sin 0, which stated in the
notation of the calculus gives the formula

d?
_ (Sin 0) = — Sin 9.
d6?

More extensive use of the method of the calculus
seems to have been made by Hindu mathematicians
during the fifteenth and sixteenth centuries. Talakulat-
tura Nambutiri (1432 A. D.) has given the expansion
of Tan x in ascending powers of z, which is usually attri-
buted to Gregory (1671 A. D.). In another work, the
Sadratnamili, we find the well-known expansions in
infinite series of Sin 2 and Cos @ in powers of «.

I am sure that, if political conditions in India had
been favourable, the method of the Infinitesimal Calculus
would have been independently developed along indi-
genous lines in India.

4. Continuity and Differentiability.
That continuity is necessary for the existence of a finite
differential coefficient was probably known to Newton and
Leibnitz, but whether it is or is not sufficient for differ-
enliability seems to have been one of the outstanding
questions till 1860, when it was finally answered in the
negative by Weierstrass.

An attempt to prove that continuity was a sufficient
condition for differentiability was made by Ampere () in
1806. Although Ampere’s proof was defective yet his
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result was believed in by most mathematicians for a long
time. Mention may be made of Duhamel, Bertrand
and Gilbert (%) among those who definitely expressed
their belief in Ampere’s result. Even in the writings of
such eminent mathematicians as Gauss, Cauchy, and
Dirichlet there is nothing to show that they held a
different opiniou.  Although they did not endorse
Ampere’s statement none of them seems to have
had the conviction that a function which was everywhere
continuous but nowhere differentiable could exist.
Darboux in his memoir on ¢ Discontinuous functions,”
published in 1875, mentions only one auditor, M.
Bienaimé, who said that he was unconvinced by Ampere’s
proof.

5. Riemann’s Non-differentiable Func-
tion. It was asserted by some pupils of Riemann that,
in his lectures in the year 1861, he gave the function
represented by the infinite series
°§ Sin (n:nx)

n= n
as an example of a continuous non-differentiable function.
No proof of Riemann’s assertior was ever published by
him or any of his pupils,* while Paul du Bois-Reymond,

* In a letter to Du Bois-Reymond, dated 23rd@ November, 1873,
Weierstrass says that Riemann was reported to bave said that the
proof wonld come from elliptic functions; see Adcta Math., Vol. 39,
p. 199,
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in a paper in Crelle’s Journal, 1874, states without
proof that Riemann’s Function, for certain values of
x, in any interval, ever-so-small, has no finite differential
coefficient. The only writer who has considered the
non-differentiability of Riemann’s Function is G. H.
Hardy (3?). He has shown that Riemann’s Function
‘“is certainly not differentiable for any irrational and
some rational values of # . Definite information is not
available as regards the existence or non-existence of
the differential coefficient at the other points. It can,
however, be easily proved that Riemann’s Function has
an infinite differential coefficient with positive sign at
the point # = o. Tbus the function is not totally non-
differentiable.

6. Condensation of Singularities. Me-
thods of constructing functions which do not possess a
differential coefficient at an everywhere dense set of
points were given by Cantor () and Hankel (3).
These methods, however, fail to give a non-differentiable
function in the strict sense of the term.

7. Weierstrass’s Discovery. The question
whether a continuous no-where differentiable function
could exist was finally solved by Weierstrass’s discovery

of the classical example
oo}

f(z)= 2= a» Cos (b*rx),

n=1]

where b is an odd integer, 0 < o < 1, and ab>1 + 32:
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Although discovered much earlier, and communicated by
Weierstrass in his lectures, the function was first publish-
ed in 1874 by Paul du Bois-Reymond (%), Due Bois-
Reymond was awe-struck by Weierstrass’s discovery and
terms it as ‘equally too strange for immediate perception
as well as for critical understanding.’

8. Attempts of Other Writers. Darboux (%)
in 1875 gave an example of a function which does
not possess a finite differential coefficient. He makes no
mention of Weierstrass’s Function published in 1874,
and was doubtless not aware of it.

Of earlier attempts to get a non-differentiable
function may be mentioned those of Cellerier and
Bolzano. There is reason to believe that the function

R Sin (a*7z)

n
n=1 a

was discovered by Cellerier before 1850, as has been
pointed out by G.C. Young ('®). The function is,
however, not non-differentiable in the strict sense of the
term, as it possesses infinite differential coefficients at an
everywhere dense set of points.*

9. Bolzano’s Function.  Bolzano’s mnon-
differentiable function was brought to light in 1921, when

*obson (36), pp. 406 — 7; also B. N. Prasad (64). G. C. Young
(100) and A. Falanga (28) thought that Cellerier’s function was com-
pletely non-differentiable.
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its discovery, in a manuscript of Bolzano said to date
from the year 1830, was first announced by M. Jasek in
the sitting of the 16th December, 1921, of the Bohemian
Society of Sciences. Proofs of the non-differentiability
of the function have been supplied by K. Rychlik (),
G. Kowalewsky (* 59), and A. N. Singh (%),
From Jasek’s paper it appears that Bolzano contented
himself with establishing the want of a differential
coefficient at an everywhere dense but enumerable set
of points. Not only was Bolzano unaware of the complete
non-differentiability of his function, but that he, at one
time, held the wrong opinion that ‘a continuous function
must be differentiable for every value of the variable
with the exception of isolated values’ is evident from a
footnote to Art. 37 of his book, * Paradoxien des
Unendlichen,” published in 1847-48.

10. The Effect of Weierstrass’s Dis-
covery. The publication of Weierstrass’s example
created a sensation in mathematical circles. The dis-
covery was hailed by men of keen acumen like Du Bois-
Reymond, but there were others who could not easily
bring themselves round to believe in Weierstrass’s demon-
stration. Evidence of this tendency is to be found in a
comprehensive paper published by Wiener (%) in which
he made a detailed study of Weierstrass’s Function, and
sought to prove that it possessed a differential coefficient
at an everywhere dense set of points,
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Besides supplying the answer to a question which had
long bheen agitating the minds of mathematicians
Weierstrass’s discovery opened up & new field of
research—the subject of non-differentiability—a subject
which has exercised great charm on the minds of
mathematicians. Indeed, there are few amongst mathe-
maticians of note who have mnot contributed something
to the subject.

11. Work Relating to Weierstrass’s
Function. A large number of papers on the subject of
non-differentiability group around Weierstrass’s Function,
or the generalised series

> ap Cos (bymx) and Za. Sin (byn),

where the a’s and b’s are positive the series 2 a, is con-
vergent, and the &’s increase steadily with more than a
certain degree of rapidity.

The couditions under which the series

2 a™ Cos (b"wx)

does not possess a differential coeflicient, finite or infinite,
were given by Weierstrass as:
o< a<l,ab >1 +?2£’
where b is an odd integer.

The only direct improvement known on this is
Bromwich’s (1)

3
o<a<l,ab>1+ %’(1 — a),

where 6 is odd.
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For the non-existence of a finite differential coefficient
several conditions have been given. Dini gives the
condition (2);

ab=1,ab? > 1 + 822
Lerch (%3):
ab >1 ,ab? > 1+

and Bromwich (M):
2
ab=1,ad?2> 1+ BT# (1—a).

All these conditions presuppose that b is an odd integer.
But Dini has shown that if

3 l1—a
ab > 1+ ?'1_.30 sy a<t;

or

1—a 5
2 2 ~ % 2
ab=>1,ab? > 1+ 167 5 ma,a<21,
this restriction may be removed.

The best result in this connection is due to G. H.
Hardy (523%) who has shown that neither of the functions
2 a® Cos (b"mz) or 3 a™ Sin (b"rz)

where o<a<1, & >1,

possesses a finite differential coefficient at any point
in any case in which ab = 1. It has been further
shown by him that the result is untrue if the word
‘finite’ is omitted. It has also been shown that these
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functions possess cusps at everywhere dense sets of

points.

12. The Series Deflnition. Attempts have
been made by various writers to generalize Weierstrass’s
result by considering the function

o]
fle) = 2 Ua(o) 0
instead of Weierstrass’s function
0
W(x) = = a* Cos (b"zx). (i3)
1

Mention may be made of Faber who replaces Cos (b"mz)
in (¢) by the function ¢(b, ), where ¢(x) is & poly-
gonal function of period 1, such that in (0, 1),
$@)=a,foro < 2 < §;
and §(z)=1—z, for} <z <1.

The function actually considered by Faber (¥ %) is

© 1 '
IZW(P(Q 'x).

The general case 3 a® $(é" x) has been shown by
Knopp to be non-differentiable when ab > 4.

Van der Waerden (%) has recently given a simple
definition of the above case when a=1/10 and & = 10-
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Let f.(z) denote the distance betwcen z and the
nearest number of the form /10", where m is an integer.
Then, it is easy to see that

°° 1

0
2 {0 a)= 2fi(e)

The above series does not give a non-differentiable
function in the strict sense of the term for it can be
shown to possess infinite differential coefficients at an
enumerable everywhere dense set of points.*

Non-differentiable functions defined by series as in (i)
above have been studied by Dini and Knopp. An
account of Knopp’s method of construction is given in
Hobson’s Theory of Functions of a Real Variable
(Cambridge, 1927), Vol. II. I shall give a summary of
Dini's method.¥

13. Dini’s Method. A general method of
construction of non-differentiable functions was given
by Dini (*)) in 1877. He considers the general series

0
f(@)= 213 Un()

* See footnote (2) to Van der Waerden’s paper. Titchmarsh (92)
mentions this example as a non-differentiable function although
he proves only the non-existence of a finite differential coefficient.

t Dini - Liiroth (28) and Hobson’s Theory of Functiens, first edition,
Cambridge, 1507.
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where U,(z) is continuous in (a, b) for all values of u,
and the series JU,.(r) converges everywhere in (a, b)
and defines a continuous function. It is further assumed
that, for each value of n, U,(r) possesses maxima and
minima, such that the interval between each maximum
and the next minimum is a number 8, which diminishes
indefinitely as z is indefinitely increased; and also that
Un(2)=—Un(x+3,), so that all the maxima of U,(+)
are equal to one another, the maxima and minima being
equal in absolute value and opposite in sign. It is also
assumed that, for finite n, U.(x) possesses finite differen-
tial coefficients of the first and second orders U’,(x) and
U”n(z) everywhere in (a, b); and that the upper
limitsof | U's(z) | and | U".(x) | have finite values
U, and [7,.

Let D, denote the excess of a maximum over a
minimun of Un(x). Let a neighbourhood (z, x-+ &)
or (x—§&, x) on either side of x be chosen, m may be
chosen so great that several oscillations of U, (z) are
completed in the chosen neighbourhood. Let the point
#+h be taken at & maximum or minimum of U,(z) in
(z, x+€) or in (z—E&, x); and let it be the first
maximum or minimum of U, (2) on the right or on the
left of 2, of which the distance from z is = } 0. The
condition

| Un(z+h)= Un(z) | =4D.
is satisfied. We note that | A | <3 Om,

3



14 FUNCTIONS DEFINED BY SERIES

Writing Up(z+5) = Un(2) =4 < mVmDm, where vg
is positive and >1, and < m=T1, its sign depending
on # and m, and possibly on A, the incrementary ratio

i 4 h)— m X mDm £ "=
O feAlof@) | vmealel'y 2k 7S T,

2h Dy n=1
+ 2Ky Rm(z"*‘h)—Rm(z')
¥ Dy,

where 7/, lies between 1 and—1, and R,(2) denotes the
. 0

remainder after m terms of the series 3 U,(z). Again
1

let 2+, be the next following extreme point of U, (x)
after « + &, so that # and &, have the same sign and
| B2 | >V h}. The difference Un(z+h)—Uy/-",
when it is not zero, has the sign opposite to that of
Un(z+h)— Un(z),
and therefore Un(z + b)) —~Un(z) = —4 Em < VinDm,
where 0 < &<,

Then we have

fth)—f(z) _ flz+h)—f(2)

(“) A - hy
-V ”» m-1 2 0(
— Lo ¥ D 1+ &’m"“ +4h’} ™ 3 U +
2h m n=1 ¥

Ru(@+h)—Rnf?) _ 2okmh Ba(e+h) — Rulz)
D'b vﬂhl Dm
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and also
< meDm h h(’l+h1) m-1 =
=T ! ” 2 X mlm
Rm(.l‘—{—h)—R,,,(.T) — Qe g O ZL_ R,,,(a: + hl)-—Rm(.’l‘)
D, M Dn

where 7”m and (" lie between 1 and — 1, and 0, 8'm
between 0 and 1.

Dini applies (i) &nd (ii) to get the following four
forms of sufficient conditions for the non-differentiability

=)
of f(v)= 21 U,(x):

(A) I

(1) 58: has the limit gzero when m is indennitely
increased ;

(2) Rm(x + h) - Rn(x) has, for values of m
greater than an arbitrarily chosen integer m’, the same

sign as o« m;
* remains numerically less than
unity by more than some fixed difference ;

then, f(z) has at no point a differential coefficient, either
finite or infinite.
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(B) If
(1) 5"'— has the limit zero when m is indefinitely

increased ;

(2) | Ru(@+h)—Rn(x) | has a finite upper limit
2 R’,, for all values of , and R, (x+h)—R,.(z) has,
for values of m greater than an arbitrarily chosen
integer m’', the same sign as « m;

1
— AR, .
(3) D len + —p remains less than unity

m
n—_=
by more than some fixed difference ;

then, f(x) has at no point a differential coefficient, either
finite or infinite,

(C) I

Om -
0 5 has not the limit zero but remains less than

some finite number, for all values of m;

(2) Rm(x+h)—Rn(zx) has the same sign as <
and R (x+ ki) — Ra(x) has the opposite sign ;
60m

8 p. S Unoré

m=1 8? m-1 l_:]
m 2 n

n=1 m p=1

remains less than unity by more than some fixed
difference ;

then, f(z) has nowhere a finite differential coefficient,
although it may have an infinite one at some points.
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(D) If
8))14
(1)

some finite number, for all values of m ;
(2) ] R (x+ h)_Rm(-z') ! ’ l Rm(x'I'hl)_Rm(@') ‘
never exceed a finite number 2 K/, ;

has not the limit zero, but remains less than

m=1 m=1
6 Sm > s 32R. 6 52m 2 == 32 R’m
(3) D, n=1 U"+S_m or D, n=1 nt 5 D,

remains less than unity by more than a fixed difference;
then f(x) has nowhere a finite differential coefficient,
although it may have an infinite one at some points,

It is easy to see that Weierstrass’s Function is a
particular case of the class of functions considered by
Dini.

14. Proof of Weierstrass’s result. I
shall give a proof of the non-differentiability of Weiers-
trass’s function, and also show that almost everywhere
the function does not possess a progressive or a regressive
derivative,

®
Let W(z) = 3 a* Cos (0*ra), where |a| <[,
0

and b is integral.

Setting 8z = 2k/b™ * 1, k integral, we get by apply-
ing the mean value theorem to the first m terms and a
trigonometric identity to the (m + 1)tk term,
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m=1

(14.1) AN @ _ o Sy Sin bon (a4 €82)
5.’&‘ 0

Sin kb

—~w (ab)™ T

Sin (b2 + 2w,
other terms vanishing on account of having a sine
factor whose argument is & multiple of .

Evidently the absolute value of the first m terms is

less than

m-1 m
b re TIBL™ sprap) >l
S el ey e | ab |

Now, if we suppose that ¥ < 35, the last term in
(14.1) is in absolute value

m 1 > k
(14.2) = v |ab| Py Sin (b"z+ )
Let x be expressed in the scale of b as
— CL & sessee c_". sseveerstsesy
R R s

where the c’s are integers such that 0 < ¢, < b—1.

Then | Sin (b"2 + <)m

Sin (I+ -+ 2y l

= I Sin (% -{-_c_"%‘__i_ l

because I is an integer.
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It is now easy te see that two values of &, k; and k.,
not necessarily equal, can be found such that

~ G (pm ¥ 1
(8) 1= 8in (" + 5 )7v=

V)

k
(B) ‘\/%“ = Sin (b + ~2)w= 1,
where &, and k; have in general opposite signs.
Thus for these values of £,

1 X . ™
Tr(a.b)m%"\/_g_ Sin (b"‘x+~';)1r = ng—wl—-'

The last term of (14.1) will then dominate in sign

and magnitude the first m terms if
lab | >1 + %E

Hence the right and left incrementary ratios which
we are considering will become infinite with m but will
always have opposite signs.

This proves that W(z) has at no point a differential
coeflicient.

15. Non-existence of the derivative,

We have dmxr = (I + Cmtl oy Cm2 o )W,

b b
That is,
Sin (bmw + _:_)n'=-_|: Sin (-:~+cm+1 +...).".
. clﬂ
(15.1) Now, if § < f’—z+—‘~+—bf—+. ..... < 2
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it is easy to see that a positive k; can be chosen so that (A)
holds and another positive &, can be chosen for which (B)
holds. Thus at all those points », whose representa-
tion is such that the condition (15.1) is realized for
infinitely many values of m, the right hand incrementary
ratio oscillates between + 00 and —oo,
(15.2) Similary, if the representation of 2’ be such
that the condition :
P < _c%l, + L"b’_;?_ Foeenes <
is realized for infinitely many values of m, it can be

[

shown that at each point 2/ the left hand incrementary
ratio oscillates between + 00 and - oo.

Further, it can be easily shown that the set of points
C[x] complementary to the set [2] for each point of
which (15.1) holds, is a null set, if 5 = 8.* The same
remark holds for the sct C[2’] complementary to the
set [2'].

Thus we obtain the following result :

Except at a set of measure zero both the upper
derivates of W(x) are +00 and both the lower
derivates —oo.t

* If =28, the set C[z] consists of points in whose representation
4 and 5 do sot occur an infinite number of times. This set is made
up of an enumerable number of perfect null sets, and is everywhere
dense on the line.

tThis result was proved by G.C. Young (100) by means of an
elaborate and lengthy analysis.
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16. Some Important Non-Differenti-
able Functions Defined by Series.

I now give a list of some of the important non-differ-
entiable functions which have been studied.

(1) a* Cos (b"zx) whereo < a< 1, b an odd
3x

2

integer, ab > 1+?:)—” sorat>1+2Z (1—a), is non-

differentiable.
(Weierstrass, Dini, Lerch, Bromwich)
(2) Zn-2 Sin n2r does not possess a finite differential

coefficient.
(Riemann, Hardy)

3) 2 a* Sin (b'nx), where 0o < a < 1, b=4m,

ab>1+ %1-"’ is non-differentiable whatever be the signs

~

of the individual terms.
(Dini, Porter)

(4) Sa* Sin (b*rx),whereo < a <1 ,ab > 9,1is

non-differentiable whether 4 be odd or even.
(Porter)

(5) X a® Sin (b%rx), whereo < a < 1, b=4m+1,
ab > 1+ %’I’ is non-differentiable.
(Dini, Knopp)
(6) 3 (—1)"a" Sin (b"rx), where o < @ < 1,
b=4m+3,ab>1 +%y is non-differentiable.

(Knopp)
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Q) 2_“_‘5"” (nlrz), | a | > 1 +3;

is non-dxﬁerentxable.
(Porter)

8 = Cos (1.8.5...(2n—1)z),

n
1. 3. 5...(2n—1)

where | a | > 1+§QE is non-differentiable.

(Darboux, Dini)

- ab® -
O 25 ey Jin (1 8. 9 (dnt 1aa),

a>1 +%', is non-differentiable.
(Darboux, Dini)

(10) If 2%7 denote any non-terminating decimal,

]a o Lzm (10%z2) is non-differentiable.
(Porter)
(11) o S o (a"m:) does not possess a finite dif-

ferential coeﬂicxent.
(Cellerier, Hardy)
(]2) If the periodic function $(z) =2, foro <=z
=l;¥@)=1—=zforl < 2 =< 1, then I a" ¢$(b"x),
where 0 < a < 1 and ab > 4 is non-differentiable,
(Faber, Knopp)
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(13) If the periodic function ¢(z)=2, foro <o
=} e(x)=1-zfori =2 < },¢e@@)=r—-2.for }<w
=< 2, then I a" $(b"x), where o < a < 1, b=4m+1,
ab > 4, is non-differentiable.

(Knopp)

(14) S (=1)"a* ¢(b"r), waere 0 < a < 1,
b=4m+ 3, ab > 4, is non-differentiable.

(Knopp)
(15) S a* | Sin (d"z2) |, where 0 < a < 1, and
ab > 1+ %f is non-differentiable.

(Knopp)
(16) a 3 a" Sin (b*zx), where |a| <1,}ab | >

1+ %1’ has a differential coefficient for x=0 but for no

other value of z,

{Porter)
vy = I_T:‘Sg'; (n!zx) bas differential coefficients
n! Co
between -1 and 1, and no differential coefficients if
3=
1 L]
fzl>1+ 5

(Lerch, Porter)



SECOND LECTURE
FUNCTIONS DEFINED GEOMETRICALLY

1. It is well known that a continuous curve ¢(xz)
can be defined by a convergent sequence of polygonal
curves [9,(2)]. This process has been used by various
writers to construct non-differentiable functions. To
illustrate the method I shall give the comstruction of
some typical curves obtained by the above process,
pointing out the main properties of each curve.

2. Bolzano’s Curve. The first non-differenti-
able function defined geometrically is Bolzano’s ourve.
The construction, which depends upon the successive
stretching and deformation of straight lines, may be
given* as follows:

Divide a straight line PQ (which we denote by Fy)
into the two halves PM and MQ, and each of these
again into four equal parts PP, PP, P,Ps, PgM,
and M Qi, QiQ2, Q:Q3, Q:Q. Now let Q; be carried
to Q’3, and P; to P’;, as shown in Fig. 1, so that the join
of PP;MQ’;Q gives a zig-zag consisting of four
stretches. We note that the slope of each stretch is
double that of the original stretch PQ. We denote

*T'he construction given here is a2 modification due to Kowa-
lewsky (50) ; see Singh (80).
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to each of the four parts of the zig-zag PP:MQ’:Q
(curve F;) Bolzano obtains a zig-zag line (curve F»)
consisting of sixteen parts (as shown in Fig. 1) each
of which is again subjected to the fundamental operation,
and so on.

The curves Fo, Fy, Fa...s0 obtained converge towards
a curve F, which referred to a horizontal z-axis
and a vertical y-axis represents a single-valued, continu-
ous, but nowhere differentiable function.

3. Proofs of the non-differentiability of Bolzano’s
function have been supplied by K. Rychlik (") who
shows that the function possesses cusps at an everywhere
dense set of points and by G. Kownlewsky (* ). A. N,
Singh (®) has given an analytical definition of Bol-
zano’s function, as well as an analytical proof of its non-
differentiability. For obtaining the analytical definition
the numbers 2 in (0, 1) are represented as
34k, 3%kes 32, k.
3 T Tt
where the a’s and k’s are defined as follows :

Let 9, denote one of the numbers 3, 7; $> one of
the numbers 4, 0; ¢; one of the numbers 1, 5; and ¢»
one of the numbers 4, 0; then

3.1) z =

4 e,

ay=o0, and k; is ¢y or ¢

and, in general,
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~

if k, i8 @1, thenagyui= a,, and k,,1is ¢; or ¢,
if ky is &, thena,.1= a,+1 and k,.;is $; or &y,
if k is ¢y, then a,;1= a,+1 and k,,1is §; or §
if ko is &g them ayy1= a, and k,,1is $; or &,

Considering the ending representations of x, we
see that, when « consists of only one term, four points
are obtained ; these being 2, 7, or £, 2 according es & is
$10or ®2.  When 2 consists of two terms, sixteen points
are obtained by giving all possible values to %; and k..
Of these sixteen points four (corresponding to k.=0)
have already been obtained. Of the remaining twelve,
three lie in cach of the four intervals into which (0, 1)
is divided by the points » consisting of one term only.
Similarly it is easy to see that the aggregate of all the
points consisting of n terms contains sll the points whose
representations run up to (n —1) terms together with three
points in each of the sub-intervals formed by these points.
‘Thus it is obvious that esch ending representation unique-
ly defines a point in (0, 1), and that the aggregate of
ending representations gives an enumerable everywhere
dense set of points in (0, 1), so that the ending and non-
ending representations of » together give all ihe points
in (0, 1).

A number z in (0, 1) being written in the form (3.1),
let

32()2 3%9n .
(82) y=Fa)= 20 4 By g Dol g
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where, if %, is & ¢ being 0,3,40r7, ¢,is 0, 3, 2,
or 5 respectively, and if %, is a ¢ being 0, 1, 4 or 5, ¢,
is 0, 1,—2 or —1 respectively.

4, Taking PQ to be the join of (0, 0) and (I, 1),
Fy is the join of (2, #) and (I, %) to the middle point
and the ends of PQ. Thus F; consists of four lines of
which the first and thira are positively inclined while the
second and fourth are negatively inclined. On the nega-
tively inclined stretches the construction is carried out as
shown in Fig. 1, according to Kowalewski.

It will be observed that F; has three edge points
(for =12, 1, %) besides the end points, P and Q, whose
ordinates are not affected by sabsequent constructions.
From the construction given, it follows that the edge
points of F;,_; ave also the edge points of F,, and further
that the abscissae of the edge points of F, are all the
points = whose represenlations in the form (8.1) run
up to n places. It is also easy to verify that the corres-
ponding values of y obtained according to the analytical
definition give the ordinates of the edge points of F,.

The function ¥ and Bolzano’s function, therefore,
agree for an everywhere dense set of values of z in
(0, 1), and as both can be shown to be continuous,*
they must be identical.

The analytical definition given abuove provides an
easy method of constructing a class of non-differentiable

*See Singh (80).
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functions of Bolzano’s type. To do this we have simply to
choose proper values of the a’s, k’s and ¢’s in (3.1) and
(3.2). It may be further pointed out that the base of
representation in (3.1) and (3.2) instead of being 8 and
4, may be any other properly chosen numbers.

5. Koch’s Curve. In two papers, (4 1) publish-
ed during 1903-1906, Helge von Koch developed a new
method of constructing plane curves having no determi-
nate tangent at any point. The following example will
illustrate Koch’s construction.

Divide the straight line (A, B) by means of points
C and E .into three equal parts. Construct the equi-
lateral triangle CDE on the middle part CE (see Fig. 2).

A R B

Fig. 2.
Apply the same construction fo each of the four new
lines AC, CD, DE and EB. Continue this construction
indefinitely. The vertices of the equilateral triangles so
obtained together with their limiting points forn the

curve of Koch.
It can be easily shown* that Koch’s Curve corres-
ponds to a multiple valued function y=K(z). For

® See Singh (77).
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example, the vertices of an indefinitely large number of
triangles lie on the vertical through E (see Fig 2), and
every vertical through a point (except the middle point)
on CE cuts the curve more than once. The curve is,
however, a parameter curve aad can be expressed by
cquations of the form : t

ax

Y

&(¢)
bi2)

where ¢(¢) and ¢(¢) are single valued and continuous
functions of .

It has been shown by F. Apt (%) that the multiple-
valued curve y=K(r) does not possess half-tangents.}
But the function, being maltiple-valued, can not be
classed in the same category as Bolzano’s curve or the
functions defined by infinite series in the first lecture.

6. Parameter curves corresponding to multiple-
valued functions have been defined by Pesno, (),
Hilbert (%), Moore (%) Schoenflies ("2), Sellerio (),
Kaufmann (*°) and others. All these curves can be
shown to be tangentless, and even without half-tangents
at any pcint. Although the curves are not examples of
continuous non-differentiable functions (being in a sense
discontinuous because they are multiple-valued), yet for

tSee Kanfmann ( ).
1By a half-tangent at a point P is meant the limit of the secant
PQ as Q approaches P always remaining on the same side of P.



PEANO’S CURVE 31

the sake of their historical importance I shall give the
definitions of some of them.

7. Peano’s Curve. Peano, in 1890, defined a
parameter curve x=9®(¢), ¥ =¢(¢), which passes through
all the points of a unit square. The following geometri-
cal method of obtaining the curve is based on the work of
Moore (57) and Schoenflies (72).

Consider the diagonal AC of the unit square
ABCD, and denote it by F,. Divide the square into
3% equal parts and also the interval (0, 1) into 32 equal
parts. Let the straight line AC be stretched and
brought into the polygonal form shown in Fig. 3. Denote

3

9
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this polygonal stretch by Fi. In this manner the squares
are arranged in the order 1, 2, 3,...8% and are placed
into correspondence with the segments of (0, 1) bearing
the same numbers. The stretch F;is made up of the
diagonals of the small squares and is traversed from A to
C in the order indicated by the numerals shown in the
figure. The above construction is now applied to each
diagonal of the small squares giving a polygonal stretch
F., which now passes through each of the 3¢ squares into
which the unit square is divided, and which goes from A
to C. Continuing the construction we obtain polygonal
stretches Fs, Fy...F,....Peano’s curve is F=Lim F,.
n—>w

We observe that the curve F, passes through each

of the 32" equal squares into which the unit square is

divided. It follows that the curve Lim £, will pass
n—>w0

through every point of the square at least once. Thus
for any given value of x, the corresponding values of y
are all the values in (0, 1). Wealso find that the secant
line drawn from any given point on the curve can not
converge to a fixed direction, in fact, it oscillates through
360° almost everywhere and the curve has no half-
tangent at any point,

The associated (2, ¢) and (y, ¢) curves given by
x = ¢()and y = ¢ (1),

are each single-valued and continuous, The functions
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&(t) and ¢(¢) have been shown to be non-differentiable
functions by Moore () and Banerji (*). These functions
will be considered in the next lecture. A different
method of looking at the correspondence established by
such curves will be illustrated by the following :

8. Hilbert’s Curve. Let the variable ¢ range
over the interval (0, 1) and let the point (2, ) range over
the unit square R. Single-valued continuous functions

2=,y = d(1)
can be defined, so that as ¢ ranges over I, (z, y) ranges
over the whole of the domain R. This can be done as
follows :

Divide the interval I into four parts &1, s, 03, &y,
and the unit square R also into four parts, =1, 79, 73, 74

2 3
. 4
: 3 A
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We call this the first division or D;. The correspondence
between I and R is given in the first approzimation by
saying that to each point P in 8, shall correspond some
point Q in 2.

Let the polygonal stretch shown in Fig. 4a be
called F,.

We now effect a second division D, by dividing the
intervals and the squares of D, each into four equal
parts. Let the numbering of these parts be carried out
as shown in Fig. 40.

n

1

13

16

PSS A >

+

Fig, 45.



Let the polvgonal line shown in Fig. 45 te called
F2. The correspondence between I and R is given in the
second approximation by saying that to a point P of the
rth interval of I corresponds scme point Q in the rtb

square of R.

The third division D; and the third polygonal

HILBERT’S CURVE

stretch F; are illustrated in Fig. 4c.
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The above construction is continued indefinitely.
To find the point Q in R corresponding to P in I, we
observe that P lies in a sequence of intervals tending to

Fig. 4c.
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zero (i length), to which correspond uniquely a sequence
of squares tending to zero (in area) and hence defining
the point Q, whose co-ordinates are, therefore, single-
valued functions of t.

The curves Fy, F;, Fs...... form a sequence of curves,
and the limiting curve
F="LimF,
n—coo

is a curve which fills the unit square. It is obvious that
the curve can not have a tangent or a half-tangent at
any point.

The single-valued continuous functions
2 = &(¢) and y = $(¢)
associated with Hilbert’s curve have been defined analy-
tically by R. D. Misra (%), who has also given a proof
of their non-differentiability.

9. Space-filling Nature of the Curves.
The curves of Peano and Hilbert defined above fill the
entirve surface of a unit square. It has been pointed out
by Moore that such curves can be obtained in an infinite
variety of ways by assigning any suitable construction
that is capable of systematic repitition indefinitely. Curves
filling entirely a unit cube or n-dimensional space can
also bz constructed by a similar geometrical procedure.
By a simple generalisation of Peano’s method, Singh (%)
has given an analytical method of obtaining curves which
fill entirely a given n-dimensional space.
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A curve filling the unit cube will be given analyti-
cally by the equations

z = $1(t), y = $(t), = = d3(t);

where the point (z, y, %) ranges over the entire cube as ¢
ranges over the linear interval (0, 1). According to
Hilbert a kinematical interpretation of the functional
relation between (2, ¥, z) and ¢ is that a point may move
so that in unit time it passes through every point of the
cube. This interpretation, however, can not be realized
in practice, as the length of the (z, y, 2) curve is
infinite,

10. Kaufmann’s Curve. The curve defined
by Kaufmann (*) is a parameter curve of the same type
as the curve of Koch. It corresponds to a multiple-valued
function y=f(x), and has at no point a half-tangent.
The curve is defined as follows :

Inscribed polygonal stretches and the projection
condition.—Let ABC be an isosceles triangle with the
fundamental side AB and the base angle v. Let CM
be the perpendicular from C on AB. Let A, A,,..... .
A,...... be a sequence of different points on MA converg-
ing towards A, such that A, lies between A and A,_1.
Correspondingly let A7y, Afs...... Ay, lying on CA be
a sequence of different points converging towards A, and
likewise so arranged that A’, lies between A and A’,_;.
By joining these stretches CA;, Aj;A%, A'1A; ArA%
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etc., we form a broken polygonal stretch V/ca. In the
same way we define in the triangle BMC a poly-
gonal stretch Vg, The joint V7 of the two polygonal
stretches VVca and Vop we call a polygonal stretch in-
scribed in the A ABC.

We now keep in mind such polygonal stretches
inscribed in the triangle ABC, all of whose stretches (suit-
ably oriented) make a constant angle with the fund-
amental side AB. If, now, v is the base angle of ABC,

then, there is for every value of 4 <——g— —v one and only

one polygonal stretch inscribed to the A ABC all of
whose stretches form with the fundamental side AB of

the triangle ABC a fixed angle less than —g-— =6 (see

Fig. 5). We call VV in this case a polygonal stretch
inscribed in the A ABC with the reflection angle 9. In
the following we shall obtain, by iteration, with the
help of such inscribed polygonal stretches those para-
meter curves which interest us.

Construction of the Curve..
We start from an jsosceles A ABC with the base
angle 7< —611 By V° we denote a polygonal stretch
inscribed in ABC with the constant reflection angle

™

O0< e On each stretch T of V° inside the reflection
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space @, we construct isosceles triangles with the funda-
mental side T and base angle less than 8. We obtain
in this manner a sequence of triangles which we denote
as chain triangles of the first order. Let, again, an
inscribed polygonal stretch with the reflection angle 8 be
given in each chain triangle of the first order. Such a
polygonal stretch may be likewise called of the first
order. We choose each stretch T of everyone of the
polygonal stretches of the first order as a fundamental
side of an isosceles triangle (inscribed in the angular
space 0) with the base angle y. Every one of such

Fig. &.

triangles we call a chain-triangle of the second order,
and we determine in this an inscribed polygonal stretch
of the secoud order with thereflection angle 9, and so on.
In such & manner will be defined chain-triangles of the
nth order (n=1, 2,...) and corresponding inscribed poly-
gonal stretches of the nth order. The joining together
of all the inscribed polygonal stretches of any fixed
order n gives a simple curvilinear arc. The sequence of
these curvilinear arcs for increasing n converges as is
easily seen towards a simple curve 1.
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11. Kaufmann’s curve is multiple-valu-
ed. It is easy to show that Kaufmann’s curve /, defined
as above, corresponds to a multiple-valued function
y=f(x). Let A;P C be the triangle constructed on the first
stretch CA; (see fig. 5). Let PPi, P1P", P1Ps.... ... .
and PQi, Q:Q", Q1Qz......be the parts of the polygonsl
stretch inscribed in the triangle A;PC. As the stretches
PQ; and PP; each make an angle 6 with PM,, it is easy
to see that PQ; is horizontal whilst PP; makes an angle

29 with it. Now, as 26< —;—, therefore, the vertical

drawn through any point on PP; must also cut the
stretch PQ;. This vertical, therefore, cuts the limiting
curve / in at least two points lying on the two portions
of ! which correspond to the stretches PP; and PQ;.
In fact, the vertical will in general cut the curve ! in
an infinite number of points. The function y=/f(x)
is, therefore, a multiple-valued function.

12. Non-existence of half-tangents.
Kaufmann has given an indirect proof of the non-exis-
tence of half tangents at any point of the curve. The
property, however, is an immediate corollary from the
multiple-valued nature of the curve at an everywhere dense
set of values of #. For, let (z, y) be any point on the curve
and let 21, @s,...2n, ..be & sequence approaching x from
the right, and let ¥, y2...4n... and ¥'1, ¥’2...9's,...be the
corresponding values of y, lying on different parts of the
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curve. It is easy to see that the angle between the two
secants joining (z, y) with (., ), and (z, y) with
(a’s, ¥'n) always make with cach other an angle greater
than 9, so there can be no limiting secant on the right
at any point. Similarly on the left there can be no
limiting secant. This shows the futility of considering
parameter curves as examples of non-diflerentiable

functions.

13. Modifications of Kaufmann’s curve.
A single-valued function can be obtained by a suitable
modification of Kaufmann’s construction. It will be
shown that the single-valued function, so obtained,
possesses half-tangents at an everywhere dense set of
points, and is differentiable there.

Let PA;C be the first chain-triangle lying in the
part AMC of the triangle ABC, and let the angle
CA1M=aQ.

The base angle v; of the triangle PA;C is so chosen
that the inclination of each of the sides PA; and PC to

the horizontal is less than —;— Through P draw the

vertical PNj (see fig. 6). We have now to construct a
series of stretches in the triangle PA;C, in such & way
that the resulting curve, represented by these stretches
shall be single-valued. For this purpose we draw through
P a straight line P P; cutting A;C in P; and lying in the
angular space Ai;PN;. Let a; be the inclination of PP,
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Yig 6.
to the horizontal. The other stretches P;P’;,P/(Ps...
and PQi, Q:Qy, Q'1Q:...are all constructed so that they
are equally inclined to A;C just as in Kaufmann’s cons-
truction. Similar stretches are constructed in all the

chain triangles. This gives us the stretches of the first
order.

On each stretch we have now to construct an
isosceles triangle. For fixity of ideas we consider the

stretch PP;. Construct on it an isosceles triangle
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P!P;P with the base angle vy, such that the inclina-

tion of each side P!P; and PIP is less than ;L .

Similar triangles are constructed on all the stretches. In
each chain-triangle of the second order so obtained we
shall have stretches of the second order. P!Py! is
the first stretch lying on the left of the triangle P'P,P,
so constructed that it lies in the angular space between
P'P; and the vertical through P1, The other
stretches are then constructed as before. This procedure
gives, at the nth stage, a curve I, which is made up of

the stretches of the nth order. The curve /=Lim/,
n—>o0

corresponds to & single valued function, y=f(z), as is
easily seen,

14. The existence of a derivative. Let the
first chain-triangle lying in the left part of the A ABC
be denoted by Aot, and let its sides CA;, A;P and PC
be denoted by So;, So.2, Sos. Let the first chain-triangle
constructed in Ao, and lying in the left-part (lower
part) of Ac be denoted by A;,; and its corresponding
sides by Si,3, S19, S15. We have likewise An1, and its
corresponding sides S 3, Sy,2, Sns. We also know that
S01s  Sitsee.ee.Snlseersen belong to the stretches of
different orders (0, 1, 2,...n,...). Their inclinations
to the horizon ao, ai, as,...ay,...form a monotone increas-

ing sequence, and as each is less than )
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Liman = @ < o \ivoveereeesevnraenens (1)
n—»00
Let vy, Va, V3,...Vn,... be the base angles of Ao1, Aviy...
An'l,..-
It is easy to see that because of (1)

Moreover the inclinations of S, 5, S, 2 and S, 5 are given
by a,, a,+v, and an—v,. It follows, therefore, that
8.1, Sn2 and S, 3 each have the same limiting inclination

a as n tends to infinity.

Consider now the point S which belongs to all the
chain triangles Ao1, Auvnse..An...This point is the
limiting point of the vertices of the chain triangles,
as n tends to infinity. Moreover, it lies in the left-part
(lower part) of each chain triangle of the sequence given
above. It is further easy to see that the inclination of
any secant joining the point S to any point of the
curve ! corresponding to the side S,3; of A, lies
between a, and @. Andsas

Lim a,=a,

n—>00
therefore, the secants drawn from S to points of the
curve [ tend to the limiting inclination a. Thus at the
point S, the curve has a progressive derivative=tan a,

™
where a S—Q— .
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It can be similarly proved that at S a regressive
derivative = tan a exists,
Thus at the point S, there exists a difjerential co-

3 - T
efficient whose value is equal to tan a; a < i

The above proof can be evidently applied to show
that there exists an everywhere dense set of points at
each of which the function possesses a differential co-
efficrent.

15. Besicovitch’s Curve. Ishall now give the
construction of the Curve of Besicovitch, which has been
stated to be without half-tangents. The curve corresponds
to a single-valued function and is defined as follows :

“ Let us take the stretch AB=2a for A (0, 0) and
B(2a, 0), and the points C(a, 6) and D(a, 0). On the

stretch AD let us construct a stretch llz—Z— placing it

centrally. The stretch AD is divided by the stretch
I, into two equal parts. On each of these let us place

centrally the stretches I, = &3 = —5;—;. The stretches

by, I, I3 divide the stretch AD into four equal stretches,
On euch of these let us place centrally (calculated from

left to right) the stretches L=l=l=I= and

a
28
so on. In this manner a set L of stretches

@
h+b+l+.. = ?

is constructed on the stretch AD.
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We construct a similar system of stretches on DB.
We call these stretches the first series of stretches.

Let us denote by m(x) the measure* of the set of
points of the interval (0, ) which do not belong to the
set L, and let us determine on the stretch AD a function
¢ (v), whilst we assume

¢ (@)= "m ().

c

A l, [4 l, D ,
Fig 7.

The points A and D are thus connected by the curve
y=¢(x), which has a constant value on an arbitrary
stretch /, and which we call a ‘ladder curve’; the
points C and B are likewise connected by such a ladder
curve, The figure originating in this manner is called
a ‘ step-triangle’ whose base is 2a and whose height is b
(see Fig. 7).

* It has been assumed that the measure m(x) exists as a unique
number for every z.
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On the fundamental lines corresponding to the first series
of stretches of the step-triangle ABC, let us construct
step-triangles directed towards below, equal on equal
fundamental lines, whilst we choose the height so that
the vertex of the undermost of all equal triangles lies on
the side AB. The construction of all these triangles is
called the operation of ¢ maiming’ the triangle ABC
towards inside. With the so obtained infinity of triangles
(first series) we carry out the same operation of maiming
towards inside, and thus obtain the second series of

triangles ; on them also perform maiming towards inside,
and so on.

Wenow define a function f(z) on the stretch AB
as follows :

(1) at the points of the stretch AB, which do not
belong to the first series of stretches, by the ordinates of
the sides of the step-triangle ABC;

(2) at the points of the stretches of the first series,
which do not belong to the stretches of the second series,
by the ordinates of the sides of the triangles of the first
series ;

(8) at the points of the stretches of thesecond series,
which do not belong to the stretches of the third series,
by the ordinates of the sides of the triangles of the
second series, and so on;
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(4) at the points which belong to the stretches of all
series (they form a null set) according to the principle
of continuity.”

It has been stated by Besicovitch (°) and E. D.
Pepper (62) that the curve does not possess a half-tangent
(progressive or regressive) at any point. Whilst it is
certain that the curve is single-valued and non-differen-
tiable, there is considerable doubt regarding the validity
of the proof, given by Besicovitch and Pepper, for the
non-existence of half-tangents.* The proof given by
these writers depends upon geometrical intuition whose
validity can not be defended. If an arithmetic definition
of the function could be devised, it would be possible to
study the derivates of Besicovitch’s function in detail
and to decide whether it has progressive derivatives or not.

16. Other Curves. In a series of papers
published during 1907—1910, Faber (% 2. 27) gave g
geometrical method for the construction of non-differen-
tiable functions. Faber’s functions are single-valued and
continuous, and have the additional advantage of being
capable of expression as infinite series. It has already
been pointed out that these functions are special cases of
the general class considered by Knopp (). Landsberg
(*') has also constructed non-differentiable functions,
which like those of Faber, are obtained by geometrical
construction in a simple manner.

* See Singh (82).



THIRD LECTURE
FUNCTIONS DEFINED ARITHMETICALLY

1. Introduction. In the year 1890, Peano (%)
defined a surface-filling curve by the help of arithmetically
defined functions

z = &(t) and y = $(¢).

'The function ¢{¢) is defined as follows:

Let a point ¢ of the interval (0, 1) be represented
arithmetically in radix fractions in the scale of 3 as

ay Qs as
t = .g_ + __37 + ‘3_3_ [ IR PPN + F dreevesines »
where the a’s are 0, 1 or 2,

Corresponding to ¢ let a number z=¢(t) be

defined as follows:
by be bn
w=¢(t)=—3—~+-3-’2—+ ------ + 3n

a2+a4+ --o+a2n

where by=a; , and b, =K -2(0211-1),

and K?(a) =a or (2—a) according as p is even or odd.
Similarly, the function ¢(t) is defined as:

c C: C
y:(l)(t):%-{-.%.{. ......... +_§’%‘_+......
a .t _tesetag
where Cn=I(1 : 271-1(“211)) (Tl=l, 2’ """ )’

and the operator K has the same meaning as before.
Peano’s functions were generalized, and a proof of
their non-differentiability was published by E. H.
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Moore(5’) in 1900. Moore’s treatment is geometrical. An
analytical proof of the non-differentiability of &(¢) has
been given by H. P. Banerji (*). In to-day’s lecture
I shall consider a class of functions of which Peano’s and
Moore’s functions are special cases.

A general theory of the construction of non-differen-
tiable functions was published by Steinitz (%) in 1899.
He divides the interval (a, b) into m equal parts and
prescribes the ¢value-difference’ of a function ¢(z)
for each of these m parts. He then divides each part
again into m equal parts, and prescribes the °value-
differences’ for each of the new m? parts. Proceeding
in this manner he obtaius a function $(r) valid for an
everywhere dense set in (a, ). By the extension of ¢ ()
he obtains a function f(2) defined for the whole interval
(a, b), but fails to give a sufficient condition for the non-
existence of finite or infinite differential coefficients. He
has, however, indicated a method of obtaining a non-
differentiable function when m is greater than 5.

In a paper, published in 1918, H. Hahn (') has
considered a function, constructed according to the
method of Steinitz (for m=06), and proves that at no
point does the function possess both the progressive and
regressive differential coefficients.

The advantage of the arithmetic definition over all

other forms of definitions is that the numerical value of
the function at each point is directly given by the
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definition so that the character of the derivates at any
assigned point can be studied directly. That arith-
metically defined functions have been attracting attention
is shown by the attempts of several mathematicians to
construct such functions. As early as 1904, T. Takagi (%)
constructed an arithmetically defined function by
using the representation of the points of a linear interval
in the scale of 2. Takagi’s function is non-differentiable
at an everywhere dense set of points. [E. Cesaro (1), in
1905, gave an arithmetically defined function which
has no differential coefficient at the points of an every-
where dense set. By representing the points # of a linear
interval in the scale of 5, W. Sierpinski (%), in 1914,
obtained a function y=f(z), represented in the scale of
3, which does not simultaneously possess both progressive
and regressive differential coefficients at any point. A
class of simple non-differentiable functions was given by
K. Petr (%) in 1920. By using the representation of
the points z of & linear interval in an even scale 2b,
Petr obtained a function y=f(x) expressed in another
even scale 2¢ (b>c).

1t will be observed that radix fractions have been
used for obtaining the definitions of the above functions.
But the use of radix functions is nol necessary as is
shown by the definition of Bolzano’s function given in
the second lecture. In fact all that is necessary is to set
up a correspondence between the points « of an every-
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where dense set in an interval, say (0, 1), with those of
another set y, in such a way that, (i) to every value
of = there corresponds only one value of y, (ii) to every
value of y, there corresponds an infinite number of values
of =, (iil) to the two representations of z (ending and
non-ending) there corresponds the same value of y, and

—_—q?
(iv) the ratio Y=Y tends to infinity as 2’ tends to «.
r—az'

*Cesaro (8) has pointed out that Koch’s curve can
be defined arithmetically. An arithmetic definition of
Hilbert’s curve has been given by R. D. Misra (%3). The
curves given in the second lecture can also be defined
arithmetically.

I shall now give a detailed study of the derivates of
a class of non-differentiable functions constructed by me.
I believe that in the casz of no other function have the
derivates been so completely studied.

2. Definition of the functions ¢..,,(z).
Let the numbers in the interval (0, 1) be expressed in
radix fractions, in the base p, where p is an odd integer.

Then a point  in (0, 1) can bz represented as

a a, , as a
r=—+ o} + F"' ser o+ p—:""""
where the a’s are positive integers such that

0<a=<p-1L
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For a given integer r and another given integer m, let

bl r bz i b
Yonrp=Pmep(r) = e
p*
where
a tayteeeta
2 =1
b=k (ar) ’
al+a2+ o +a'r- 1+ '"am +r=1
b=k am+r),
a1+ * +a'r+1+ oot +am+r+1+ ot +a2m+r—1
b3.r= k (,azm+r),

and so on; where k*(a)=a or (p-l-a) according as ¢
is even or odd.

In the above, the integer p may have any odd value
3, 5, 7,..., the integer m may have any ome of the
values 2, 3, 4,.. and 7 is an integer <m. The function
$213(x) is Peano’s function &(#), and the function
®y23(2) is Peano’s function $(¢) ; while the functions
®21,(r) and op(7), where p is an odd integer= 3,
are the functions considered by Moore.

3. The function ¢;:3(r). 1 give below a
proof of the continuity and the non-differentiability of
the function ®3;3(x). The proof for the general case
can be carried out exactly in the same manner,

We have, if

=— sevees 4+
r= 3+32+ 3

Ys13=®313(2)
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. by b2 baa
= > Faev e L= T
3 + 3¢ + 3=
which, dropping out the suffixes, we write as
—o(r) =21 4 B b
where

b= k°(a1) =
a ta

2 8
b2=k (04)
e ta . +a +a
8 5 6
. bs=k (a7)
¢2+¢3+a5+¢6+ soe +¢3(n—1)-—l+“3(n"'l)
b=k (33(n-1)+1)

and so on; and where k*(a)=a or (2—a) according as
# i8 even or odd.

4, Y=¢(z) is a continuous function of x.
The points # which have a non-ending representation
such that all the a’s, from and after a, are not all 2’s, are
uniquely representated in a radix fraction, and thus. for
all such points we have a single value of Y.

When z is representable as an ending radix fraction,
it has also a non-ending representation in which all the
a’s, from and after some place, are equal to 2,

Three cases arise ;

a , a a
(1) 4-1_—_-_3_1 +§%+"""+‘§§%’



$(x) IS CONTINUOUS

= gt O ol
LN
2) %= = %’—+ % +...+_;:: %ﬁ
=S g e R
+ 33f+3 ......
38) x = %+—;—: +...+7(';_;:‘%.
=St SR
+—§3qu+ ......

55

Case (1). Let the values of ¥ corresponding to the

two representations of x be

—_ bl b2 bn bn+1
YI_T+_§2__+...+ o gn—f{"' ......
and
_ b, b ', ¥an
Y’l__g__+_8T+tou+ ?-'- 3“:1 +-oo-.o
respectively.

Then as the two representations of x agree up to 3n

places,

bl=b'1, b2= b’z, .

and we further have

2ey bn=b'm
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bupy= k28 M g)
b’ +l=ku2+a i 3n—1+(“3n_1)(2)
and in general
bm,l—ka?"t'z Freeta 1+"3n(0)
Bag=k2""s" +"3n-1*"‘3,.-1>+4u-1)(2)

for I=1, 2, 3,......
L 4
We see that if the index of & in tha first case (i.e. b, 1)
is odd, it is even in the second case (z.e. 8’,,:); and if it
is even in the first case, it is odd in the second.

Thus
bn+1=b’n+1, bn+2=b'n+2, cees bn+l=b'n+l cecane
S.Y1=Y", and Y is uniquely determined for the
points of Case (1).

Case (2). Let the two representations of Y correspond-
ing to the two representations of x be

bl b bn bn 1
Y, = -~ RN B Lt T
=gty Tt g
and
b | b b, b1
Y=l d otk b

We have as before
bi=b", bo=byy «..vv. bp=10"5.
Now let

az+az+ as+ ag+ - +ag-1tag =N
Then
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bry1=k N (a3n41), Bns1=k™ (agup1—1)
and in general
b=k (0), brayy=Fk N +4C-1(2)
(for 1=2, 8, 4,......).
Let X be even, then
bn+l=asn+1 and b’n+1= (43114-1_ 1)
while 0,,:=0, and ¥, ;=2 (for =2, 3, ...).

. — b1 bo ba agn 41
. .Y2— “?"":ﬁ +"'+—§1-l—+—ém—
by b2 bn (asx 1—~1) 2
and Y12=_3_+5_32.+...+§+ 3:“ .,.3"”
2
gy T

Hence Y2 =Y",.

Similarly, if X be odd, it can be proved that

Y2=Y’2.

Therefore, Y is uniquely determined for the points of
Case (2).

Case (3). Proceeding as in Case (1) we can show
that Y is uniquely determined for the points of Case (3).

Thus Y is a single-valued function.

We observe that if two points x and 2’ agree up to

the first 3n places in their representations, the correspon-
ding values of Y agree up to the first n places.

Therefore, Y is a continuous function of z in (0, 1).
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5. Y=9¢(x) is nowhere differentiable.
Non-existence of cusps.

For the purpose of proving the non-differentiability
of $(x) we divide the numbers of the interval (0, 1) into
the following four classes.

Class 1 (a). A number belongs to this class, if in its
representation (as.-1+as) < 2 and as,, is not equal
to 1, for an infinite number of values of n.

Class 1 (b). A number belongs to this class, if in its
representation (as,-1+a3,) < 2 and asgp,1=1 for an
infinite number of values of n,

Class 11 (a). A number belongs to this. class, if in its
representation (as,-1+ as,) > 2 and as.,; is not equal

to 1, for an infinite number of values of n.

Class II (b). A number belongs to this class, if in its
representation (ag,-1+as:,) > 2 and ag,1=1 for an
infinite number of values of n.

{t is easy to see that a given pumber in (0, 1) must
belong to at least* one of these four classes.

Class 1{a). Let h,.=-2§T[n having & value for which

g1, agn 0Nd @31 satisfy the conditions of I (a)].

Then
¢(1') =¢(1'+hn)’

* A number may evidently belong to more than one class.
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 Lim S@th)—0() _
hn=o h”

Again, let h',.=%, n having the same value as

above, then
¢(z‘+h"')_¢(x)] > 3M1
. Lim ¢ (‘z'+hn) ¢(1') 331»
h'"=0 h n_w gntl
=0

‘. The progressive derivative does not exist at the
points belonging to Class I (a).

Class 1 (b). Taking k,= -2;5-}- , we see a3 before that

L’hn ¢(1‘+ hn) - ¢(‘r)

=00
ha=0 h"
. P !
Toking k'n= gy, We see that
, O(e+ k') — () , i
Lim l¢ (z+ k)~ ()
ha=0 R

*. The progressive derivative does not exist at the
points belonging to Class I (b).
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Class 11 (a). Taking A, and k'pas in I (a), we see that
& (x —hy) — & ()

hy,=0 ~hn
and Lim ¢(‘l'_ h'")’ - ¢(.1.‘) =
Ka=0 —

.". The regressive derivative does not exist at the points
belonging to Class II (a).
Class 11 (b). Taking k, and %', as in I(b), we see

that Lim P(x—h)—&(2) =0
hn = 0 - hn
and Lim o(x— hl”z =%) =00
Ha=0 —#n

~. The regressive derivative does not exist at the
points belonging to class II (b).

We have thus shown that at the points belonging to
Class 1, the progressive derivative does not exist, while at
the points belonging to Class II, the regressive derivative
does not exist. As any point in (0, 1) must belong to at
least one of these classes, therefore, at no peint 2 in
(0, 1) do both the derivatives exist, i.e. $(z) is nowhere
differentiable in (0, 1). Also the function () does
not possess a cusp at any point *.

® Cf. Hobsou; Theory of functions, etc., Vol. 11, (1926) p., 405,
where it is stated, *“ It does not appear to be definitely known whether
a pon-differentiable function can exist which has no cusps.’ The
analysis of ths derivates given above definitely answers this question.
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6. Existence of the derivative of ¢(x).

(6.1) It has already been shown that at the points
belonging to Class I, $(x) does not possess a right hand
derivative ; hence, in order to get the set of those points
where &(x) possesses a right hand derivative, we search
among those points x in whose representation
(@3n-1+ as.) > 2 from and after some value v of n. We can
easily show that if, for a point z, (ag,.14 as.) =3 for an
infinite number of values of =, then the right hand
derivative is non-existent at . Thus the points where
a right hand derivative may exist are such that in their
representation (asa-1+ @) =4 for all valdes of n greater
than or equal to some number .

(6.2) Let z be such that in its represeatation
(asn-1+ azm)=4 for all values of n = v and as,,11s
either 0 or 1 for all values of » = v. Further let

-1
3 (asy - 1+ a3,) be even.
1

Then a point 2 of this type has the representation

2 2 A3p 41
2 2 A3y 44 2 2
+ g3v+2 + 33v+3 + gavtd toedt oy 3sm--1 ’337'
a3m 41
+33m:l

A point 2’ lying on the right of 2 sufficiently near it,
must have the representation
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,_. M A3y 41 . 2 2
(6'22) = 'v‘r‘)" teeot -33v+1 + e + 331)1-1 33m

 Fomel 4 Qomer | Goassy
g3m+l g3m+2 g3+ 4

where
(6‘23) ’2m 41> A3in 41

The corresponding representations of ¢(z) and &(a’)
agree up to m places. After the mth place the representa-

tions are: for ¢(x) -
Azmy1 , A30n+1)+1 A1 4L,
(6'24’) '_3m—+]— —31)1+2 +oet gl+l + ’

and for ¢(2")
6.25) Pomer oy Owez ) by

gm+l gm+2 gﬁf‘
Therefore,
4 —— Qo
(6.26) (7)) —d(a) = (%‘@Q
(bm+2;ji(2m+1)+l) A eerens +(ﬂﬂ;f+l+l) $orerenn

Now, the least value that the &’s can have is zero,
while (0’3,n+1—l13m+1) = l, by (6.23).

' 1 1
(6.27) . ¢ (@) —0(2)= gom — { gtz
1 1
+ T Foereeen } =1 preat

for the ag.,1’s are either 0 or 1.
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(6.28) Also (@ =)< —

33m .
Therefore,
1 1
2.
Lim @) —&() >Lim __ 8"H
=z - m= ¢ 1

>Lim § 8™-1= o,

m= op

Therefore, at the points of this type, there exists a
right hand derivative equal to co.
(6.8) Taking the a’s up to az-2 to be fixed, the
points of the type (6.2) (for this fixed v) are obtained
by giving to the asuir);1’s the values 0 or 1 (where
r=0,1,2,3,...). Thus these numbers can be placed into
one to one correspondence with the numbers of the
continuum (0, 1) expressed as radix fractions in the
scale of 2. The cardinal number of these points is,
therefore, c. As v can have all finite integral values,
the set of all the points of the type (6.2) is everywhere
dense in (0,1).* Moreover, the set of points of the type
(6.2), for a fixed v, form & non-dense set. Giving to v
the values 1, 2, 3,...we get a sequence of such sets.
It follows, therefore, that the set of all the points of the
type (6.2) form an unenumerable, everywhere dense set
of the first category in (0, 1).

* For, given any iuterval (a,8) in (0, 1), we can easily find a

point of the type (6. ) in (@, B). Te do this we have simply to
choose the a'sproperly.
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(6.4) Let (asi-1+as.)=4 for all values of n = w.

If ., denote the number of as,,1’s which are equal to 2,
n=m+1, m+ 2........., immediately following a3, ,1(not
equal to 2), let

Lim (2m—p,)=co,

m= o

v—1

and further, let X (as.-1+ a3,) be even.

1

-

Then reasoning as before, corresponding to the
inequality (6.27), we get

@(.T’)—¢(x)2—1——§ 2 2

3'm+1 3171:2 31:1?—5

+o 2 }
31)I+}Lm+2

1 2 1 1
> % 14 e
3m+1 3m+2 { 3 + + 3}Lm 2
1
1-—-
- —L—r&w . S}LM
Togmil gmi2t 1
>_1 _shn—1
3m+1 37'1+}—‘4m+1
=1
gm+Pm+1
Therefore,
1_..,——-
@ =9(@) o 8 > gy,
-z 1

33m
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Hence

Lim _@@)— &) - [ gw-p,-1 =oo,

AP v
= a’—x m= e

for Lim (2m—pu)=co by supposition.
m= co
Combining the results of (6.2), (6.3) and (6.4), we can
assert that there exists an everywhere dense set of points
at which ®(x) has a right hand derivative equal to «.

v-1
(6.5) If > (a@s-,+az) is odd, while the other con-
1

ditions of (6.2) and (6.4) are satisfied by the represen-
tation of a point x, then it can be casily shown that there
exists a right hand derivative at z, which has the
value— 0.

It follows, therefore, that there exists an everywhere
dense set of points at each of which &(x) has a right
hand derivative equal to— 0.

(6.6) The preceding results can now be summarized

as below:
(1) There exists an everywhere dense set of points

S at each of which ®(x) has a progressive derivative
equal to co. A point x of this set is such that (a) in its
representation, (ag.-1+ @) =4 for all values of n = v,
and if P denote the greatest number of ag.y’s,
(n=m+1, m+2,...) immediately following asmi1 (not
equal to 2), which are equal to 2, then
Lim (2m—pn,)=c0 ;
m= oo
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v~1
and 3 (ag-1+ ag) is even.
1

{2) There exists an everywhere dense set of points S,
at each of which &(x) has a progressive derivative equal
to ~ow. A point x of this set is such that the condition
(a) of (1) relating to the representation of x is satisfied,

while
[ 4

v=-1
> (agr-1+as) is odd.
1

Similarly it can be proved that:

(8) There exists an everywhere dense set of points S
at each of which &(x) has a regressive derivative equal
to w. A4 point x of this set is such that (a) in its
representation (ag,-1+ as) =0 for all values of n =v’,
and if P'm denote the greatest number of agn,1's imme-
diately succeeding agm;1 (not equal to 0), which are all
equal to 0, then

Lim (2m—p)=o0;
m= oo
o1
and 3 (agr-1+as,) is even,
I

(4) There exrists an everywhere dense set of points
Sy at each of which ®(x) has a regressive derivative
equal to ~ . A point x of this set is such that the con-
dition (a) of (8) relating lo its representation is satisfied,

o -1

while 3 (agy.1+ as) is odd.
1
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7. Second Example.

Let a point ¢ in the interval (0, 1) be represented as
a; as ag ay
8 785 85 5T
where the a’s are zero or positive integers such that a,
=< 4and a4 =< 2 (r=0, 1, 2,...).

=

+ Foeens

Corresponding to ¢ let a number x be defined as

[ C3

[
x:(?(t):—é—"'—gz— -?3;"'“-!

where
c1=ay, =P % (@), ..., ca=P Q¥ 0T ¥y, (agaya), ...
and P* (a) denotes a or (2— a) according as k is even or

odd.
I shall first prove that ¢(¢) is a continuous function
of ¢ and then prove that it is non-differentiable.

(7.1) x=¢(t) is a continuous function.

The numbers ¢ may be divided into two classes :

(1) Those which are capable of double representa-
tion,

(2) Those which have a single representation only.

If ¢ be & number of the second class, x is uniquely

defined.

If ¢ be & number of the first class, whose ending
representation runs up to an odd number of terms, then,
since,
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as a2n+l 4 2
3 +3 5 i e G+l 5n 3n+].5n+1+3n+2.5n+l)

4 2 . .
+(3n+2_ 5n+2+3n+3.5n+2) o to luﬁnlty

& aZn+1+]
~ 3 35 gn+lgn’

t can be represented by the finite series or by the infinite
series ; and if a,+ a4+ - + @, is even, we see that the

velues obtained by applying the definition of x to the
two modes of representation of ¢ are

(5] Co Cy Cntl 2 2
3 tegrttmtagitantan
and
Ca nl
—_ + S B PP R 2R
3 4? gn | gntl

where ¢,;1 = aang1, and ¢y = amyi1 + 1, so that the
same value of x is obtained for both representations of ¢.
Similarly if a,+ a4+ -+ az, is odd, it can be seen that
x has the same value for both representations of . The
case when the ending representation of ¢ runs up to an
even number of terms may be similarly treated.

r=¢(¢) is thus a single-valued function of ¢. Tt
is continuous, for if ¢ and ¢’ are identical as regards their
first 2n terms, the corresponding # and 2’ are identical
as regards their first n terms, and, therefore, when ¢
tends to ¢ with incressing n, 2’ tends to 2.
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7.2) « = ¢({) is a non-differentiable
function.

For proving the non-differentiability of ¢(t), the
numbers ¢ may be divided into two classes (A) and (B).

First consider class (A), i.e., the class of numbers
in which az =< 2 for infinitely many values of r.

1f ¢; be a point of this class, we see that the addi-

tion of —3;25—1, to £, does not make any changein the value

of ¢(t)), since a,- becomes a,r + 2 so that & remains even

or odd as before; while the addition of e to #; does
so. Therefore,
2
cf’(tl + -;-7) —(f)
lim 87.8" =0
—_ 2 -
S 57
and
t + 1 — ¢(t)
s PLh Fripr ?(h
- —
lim 1
31‘4-1‘ 51‘

where the limits are taken as » tends to infinity assuming
those values for which the inequality a,r = 2 is satisfied.

Thus at the points of class (A) the differential co-
efficient is non-existent.
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Now consider class (B), i.e., those numbers ¢ in
which az, > 2 for infinitely many values of 7.

If ¢; be a point of this class, we see that the sub-

traction of 5’25—"- from ¢, does not change the value of

¢(¢2), while the subtraction of ——from ¢, does so, so

3r+1 5"
that
2
cp(t2 —--———) — @(t2)
lim 31-.;1- =0
3r.57
and

| o(- 3,+,5, — ot '

-

‘ 3r+1 hr

where the limits are taken as » tends to infinity assuming
those values for which the inequality ay > 2 is satisfied.

Thus at the points of class (B) the differential co-
efficient is non-existent. » = ¢(¢) is, therefore, a non-
differentiable function in the interval (0, 1).

Every function of this type* can, by a similar treat-
ment, be shown to be devoid of a differential coeflicient
at each point in (0, 1).

*For the general class of functions of which the above is a parti-
cular case see Singh (79,
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8. Third Example. Let the numbers of the
interval (0, 1) be expressed in the decimal scale as

a Qs A2 -1 QAon
Tot10r T T aome T iom
where every a is one of the numbers 0, 1, 2,...or 9. Cor-

responding to z we deﬁne & number
by , by b
y=1@) = oo+t 05t oo
where 0, = £ (202n-1+0n), and ¢, =0, 1 or 2 according
8s @z, is 0,2, 40r 1, 8,5, 7,9 or 6, 8 respectively, and
b7 has the same sign as b,_1, if a,-215 0, 2, 4, 5, Tor 9,
otherwise it has the opposite sign; and &; is always

e ose

positive.
(8.1) y=f(z) is a continuous function. y is
evidently continuous at all the points # in (0, 1) which
have a unique non-terminating representation in the
scale of ten. Those points # which have a terminating
representation have also a non-terminating representa-
tion. To prove the continuity of y in (0, 1) it will be
enough to show that y is uniquely determined at all the
points where 2 has a double representation.

Let 2 be & point whose representation runs up to
(2n—1) places. Then

a a2 dfm-
= — 4= —
=10 troe Tt igme
ay | up (azn_1—1) 9 9
=1 L 22 4Ty Y Y+
10 +102 + + ]021;-1 + 10211 + 1027+t

1 1t will be observed that b, can have the value 20.
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And saccording to our definition, corresponding to the
two representations of «

. bl b‘.! bn—l bn
20 Te0 T +“9§0ﬁ'-1 20"

bn-l b'n
20 = 202 Foeek 20°-1 T gon

=+
(20n+1 20n+2+ ")'

We have b,= = (2a,.1+0) and
b, == [2am-1—1)+1], le, | W] =] ]| —1.
But the terms that follow 4, have the same sign as &/,

1
and their sum is 0% Hence the same value of y cor-

responds to the two representations of .

Similarly, if # has a terminating representation run-
ning up to 2n places, we can show that the same value of
¥ is obtained for both representations of .

It follows that y is a continuous function of x in
(0, 1).

(8.2) ¥ is a non-differentiable function,
(2) Let  be a point in whose representation an infinite
number of a,,’s are 0, 1 or 2. Then

Fe+ om)—f@=0
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while

|G+ o)~ | =g

for an infinite number of values of n tending to infinity,
so that one of the derivates at « is zero, whilst another is
indefinitely great* (numerically). Thus the differential
coefficient is non-existent at all such points.

(b) Let z be a point in whose representation an
infinite number of a,.’s are 3 or 4. Then

F—gm)—rf@ =0

while

o

f (x 102 )—f (=) 9zon
and, thereforc as before, the differential coefficient is non-
existent at all such points.

(c) Let « be a point in whose representation an in-
finite number of ay’s are 5, 6 or 7. Then

2 —
f‘(m + —1_02_1!) —f(x) =0
while

5
!f( "‘W,—; ‘-f()]— 0”’

T 1
*For Lim ’ _f(—ll'-*_-’l)____._f;(fl. > [ im 20"
h=0! h = e B

10‘.’1:
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and, therefore as before, the differential coefficient is non-
existent at all such points.

(d) Let 2 be a point in whose representation an
infinite number of a2,’s are 8 or 9. Then

F (= qgm) = f@=0 '

f( 135"— —f()‘ 20"°

and, therefore as before, the differential coefficient is non-

while

existent at all such points.

Now, any point in (0, I) comes under at least one of
the four heads enumerated above, and hence at no point #
in (0, 1) does there exist a differential coefficient.*

* For the general class of functions of which the above is a parti-
cular case see Singh (83).
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PROPERTIES OF NON-DIFFERENTIABLE
FUNCTIONS

1. In to-day’s lecture I shall give an account
of the recent work relating to the study of the
properties of non-differentiable functions, especially with
regard to the existence of cusps and derivatives. In this
connection I shall also enumerate some of the important
results of the theory of derivates which have a direct
bearing on our subject. An account will also be given
of the character of the oscillations of non-differentiable
functions. It will be shown by means of an example
that the oscillations of a non-differentiable function may
be un¢numerable in every interval how-so-ever small
taken in the domain of the function. Whether or not this
is a general characteristic of all non-differentiable func-
tions is unknown.

2. Upper and lower derivates. Whena
continuous function f(x) does not possess a right (left)
derivative, the incremeantary ratio

R(x, k) = f(“"*'h)h;f(w) ,

k >0 (<o), does not tend to any limit as % tends to
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zero. In such a case R(x, k) is associated with its
upper and lower limits which are called the upper and
lower derivates of f(z) on the right (left), and are
denoted respectively by the symbols D+f(x), D,f(x)
[D-f(x), D_f(x)]. In recent years, these derivates,have
been closely studied and & number of very interesting
results obtained. Whenever the derivates are finite
almost everywhere, they can be used in the place of
the differential coefficient. The derivates of non-differen-
tiable functions, however, can not be used as they are
infinite almost everywhere. In fact, in the case of every
non-differentiable function, it can be shown that

(@ Dt = D- = oo
ard () D, = D. = o
almost everywhere.

8. Sufficient condition for differentia-
bility. The discovery of continuous non-differentiable
functions brought to the fore-front the question: “In
what cases and for what aggregates of values of x can
we assert that a function f(x) possesses a differential co-
efficient ?” Perhaps the most important answer to this
question has been given by the following theorem of
Lebesgue (52) :

A continuwous function of bounded variation has a
finite differential coefficient at every point which does
not belong to a set of measure zero.
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This theorem was extended to the case of monotone
functions (not necessarily continuous) by W. H. Young
and G. C. Young (%), who gave a proof independent
of the notion of integration and of transfinite numbers.
Elementary demonstrations of the theorem have also
been given by Faber (%) and Tonelli (*3). Proofs which
hold for any function of bounded variation have been
given by Carathéodory (16) Steinhaus (%) and Rajchman
and Saks (). It has been shown by Singh (¥") that
the set of points of differentiability of a function of
bounded variation is of the second category.

It follows from Lebesgue’s theorem that a non-
differentiable function is not a function of bounded
variation and 1s consequently not rectifiable. This
leads us to the following three properties of a non-
differentiable function :

(i) it is everywhere oscillating ;
(ii) the length of the arc between any iwo points
on the curve is infinite ; and

(iii) the geometrical graph of the function can not

be drawn.

4. Existence of cusps. The question arises
whether a non-differentiable function can possess proper
maxima and minima. As the function is non-differenti-
able, the proper maxima and minima, if they exist, must
be either cusps or edge-points (i.e., points at which the
derivates on one side are positive whilst those on the
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other side are negative; the derivates on one side at
least being finite). Hardy (32?) and G. C. Young (%)
have shown that Weierstrass’s function

)
W(zx) =23 a" Cos (b"zx)

’
o

has at the everywhere dense set of points z= ';%; right-

hand derivatives = — oo , and left-hand derivatives = .
Thus these points are cusps whose edges point upwards
and are proper maxima of Weierstrass’s function, It

has also been shown that at the set of points ,_—_QLb ";1,

the function has proper minima, with cusps pointing
downwards. Bhar (%) has found similar everywhere
dense set of cusps on the curve

o0
D(x) = Za" Sin (b rx).
1

All the functions defined by series and given in the
first lecture, can be shown to possess cusps at every-
where dense sets of points. Hobson* has remarked,
“ It does not appear to be definitely known whether a
non-differentiable function can exist which has no
cusps.” This question was answered by me in the third
lecture, where it was shown that the function ¢513(¢)
has no cusps, because at no point does the function possess

* See Hobson (36) p. 405.
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both & progressive and a regressive derivative. Functions
which do not possess cusps were considered by Moore
(%7) Sierpinski () and Hahn (3!), but their investiga-
tions seem to have escaped notice.

It does not appear to be known whether a non-
differentiable function can exist which has edge-points
at an everywhere dense set.

(4.1) Theorems about cusps and deri-
vates, B. Levi (*) has proved the theorem :

1he aggregate of points x, of an interval (a, b), at
which a function F(x), continuous in (a, b), possesses a
progressive and a regressive derivative, which are
different from each other, is enumerable.

This theorem has been generalised by Rosenthal
(*®) and G. C. Young (%).

From Levi’s theorem it follows that the set of
points at which a function has cusps is enumerable. In
connection with the existence of an everywhere dense
set of cusps may also be mentioned the following
theorems due to Koenig (*¥) and Rosenthal (%) respec-
tively.

(1) If the continuous function f(x) possess cusps
at an everywhere dense set of points, there exists an
everywhere dense set of points at each of which the
differential coefficient has the prescribed value c, or is
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indeterminate and such that c lies between its upper and
lower limits.

() If the continvous function f(x) has cusps at
an everywhere dense set of points, three exists a set of
the second category at eack point of whickh the fukiction
lacks a progressive and a regressive derivative.

(4.2) Denjoy’s Theorem. The relations which
subsist between the four derivates of a continuous
function at a point, if one disregards sets of measure
zero, have been systematically investigated by Denjoy(2!),
He has obtained the following theorem :

If f(x) be a continuous function, finite at each
point, and if a set of measure zero be left out of account,
then, at the various points x only the following four
cases are possihle®.

(1) D*=D-=D, =D_= finite,

(2) D+=D-=CD;D+=D—=—°°’
(3) D+=00, D.=—« ;D+= S= ﬁnite,
(4‘) " =0, D+='—oo ; D.=D%= finite.

Each of the above four cases can be individually
realized, i.c., a function can be constructed for which a
definite one of the four cases occurs. Denjoy has

* The above result has been shown to hold for a finite and
measurable function by G. C. Young «101). Saks (71) has given a
proof applicable to non-measurable functions, and an extension has
been made by G. C. Young to the case in which the function is
infinite at the points of a set of positive measure.
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constructed & function for which every one of these four

cases occurs.

(4.83) Derivates of non-differentiable
functions. The properties of the derivates of non-
differentiable functions have been studied by W. H.
Young (1%), and the following result has been established
by him:

If a function f(z) is non-differentiable in an
interval, then

(1) there is necessarily a distinction of right and
left in the values of the derivates at a set of points
which is everywhere dense and is of the first category ;

(2) the upper and lower bounds of the wvalues of the
derivates at the points of this set are respectively «
and — 05

(8) at the remaining pownts of the interval, both the
upper derivates are oo and both the lower derivates
are — oo, exception being made of at most another set of
the first category.

Young’s theorem is supplemented by the following
result due to Singh (®!):

Every finite and continuous non-differentiable func-
tion has associated with it

(1) an everywhere dense set of points 8y, at which
D.> M,
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(2) an everywhere dense set of points S,, at which
D*< - M, '

(8) an everywhere dense set of points Ss, at which
D.> M,

(4) an everywhere dense set of points Sy, at which
D-<—M,
where M is any positive number, however large.

Although the above result does not establish the
existence of points at which infinite derivatives exist, it
nevertheless shows that, in the case of every continuous
non-differentiable function, there exist everywhere
dense sets of points at each point of which thereis an
arbitrarily near approximation to the existence of a
determinate (right and left) derivative which is numeri-
cally infinite,

5. Study of Derivates. G.C. Young (1%) has
made & detailed study of the derivates of Weierstrass’s
function

W(z) =23 a* Cos (0" z),

2“!-

where b is an odd snteger and ab > 1+ 3
The result obtained by her may be summarised as
follows :

Let a point 2 in (0, 1) be expressed in the scale of
b, as
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.Z=%l-+-;:—z +“'+fb%+“”"
where the ¢’s are 0, 1, 2,.., 5—1, then,

(1) at the set of points S; represented by an ending
series of the above form W(z) has cusps;

(2) st the set of points S, given by the points z in
whose representation cuy1, €iny2y......87e all even, the
derivates are non-symmetrical ;

(3) st the set of points S; which is complementary
to (S1+8S,), the derivates are symmetrical, both the
upper derivates being o and both the lower deri-
vates — 0.

The set S; is enumerable and the set S, can be
easily proved to be of zero measure. W. H. Young’s
theorem is thus verified. A closer study of the derivates
of Weierstrass's function seems to be necessary in order
to find the actual values of the derivates at the various
points of the set S,.

‘The investigations of Porter (®)) and Bhar (%),
although incomplete, show that the derivates of Dini’s

function

)
2a* Sin (b*xr),
1

where b is an even integer, and ab > 1 +%’5 have

the same general character as those of Weierstrass's
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function. Let the numbers 2 in (0, 1) be expressed as
radix fractions in the scale of b as

According to Porter, except at the points of the null
set [z] for which c,=0 and c,=0—1 fail to occur
infinitely often, the right and left incremental ratios ot
Dini’s fanction have each for their upper and lower
Yimits 4 » and — .

Bhar has studied the function
Sin (18"zz) |
2"
His method can be modified to prove that the function
2 a* Sin (b"xz)
possesses cusps at an everywhere dense set of points in
0, 1).

6. The Derivates of ¢, ,,(r). In the third
lecture I showed how the set of points where the function
@3,1,3(2) possesses one-sided differential co-efficients may
be obtained. I shall now state the similar result which

can be obtained for the general class of functions

Do)

Smrp(®) 18 nowhere diffcrentiable in (0, 1), has
no cusps, and

D(x)=3

(1) there exists an everywhere dense set Sy, at whick
Smrp(®) has a right hand derivative equal to oo .
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A point x of this set is such that (a)in its representation
Ann=-1)4r41+F Buu-1y4razt -+ Gmngr-1
=(m—=1)(p—-1)
for all walues of n = v (a fired number), and if P,
denote the greatest number of @mnir's (n=¢+1, ¢+2,
...... ) immediately succeeding @nqyr (not equal to p—1)
which are all equal top—1, then
Lim (m—1)g~— =00,
g—>00
v—1
and (b) 2 (am(n-l)+r+1+ o G pr-1) is even;
n=o0
(2) There caists an everywhere dense set Sy at
which Puyep(x) has a right hand derivative equal to
—00, A point x of this set is such that the condition
(a) of () is satisfied while,
v—1

> (am(n-l)+r+l+ +amn+r—1) is odd;
n=q

(8) There erxists an everywhere dense set Ss at
which Bprp(2) has a left hand derivative equal to oo,
4 point x of this set is such that (a) in its representa-
tion @mn-1)4rs1F Gmu-1)4r42+ 0 F Qungr-1) =0 for
all values of n= v, and if p’, denote the greatest number
of Gunyr's (n=q+1, g+2,...) immediately succeeding
@mqsr (N0t equal to 0) which are all egual to 0, then

Lim (m—1)g— P =
>0
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v—1
and (0) 2 (@w@-1yers1+ o+ AQungrai) is cven;
n=o
(4) there exists an everywhere dense set S, at
which Qunrp(x) has a left hand derivative equal
to—00 . A point x of this set is such that the condition
(a) of (3) is satisfied, while
v-1
> (am(n-1)+r+1+ ---+amn+r-1) is odd.

n=o

7. The Oscillations of non-differentiable
functions. Attempts were made by Wiener (%),
Klein (%) and G. C. Young (%) to evolve a  graphical
representation »’ of Weierstrass’s function. As the func-
tion does not possess a graph, exact information as to the
nature of the singularity at a point on the curveis
obtained mainly by the study of the values of the derivates
at that point. For instance, if we know that at a point P
(x1, 1) on a continuous curve y = f(x), D¥ =00 and
D, = —00, we can at once say that the curve cuts the
line y = y; at an indefinitely large number of points in
any neighbourhood on the right of P, and so makes an
infinite number of oscillations. Similar will be the case
on theleft of P, if D= 00 and D.= — co. It has
been shown by G. C. Young (1®) that for a set of
points [#] whose measure is 1, in (0, 1), both the upper
derivates of Weierstrass’s function are 00 and both the
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lower derivates are —oo. It follows, therefore, that a
point P on the curve which corresponds to a point x
belonging to the set [x] has the property that any line
through P cuts the curve an infinite number of times on
both sides of P.

(7.1) It is evident that Weierstrass’s function
W(z)=23 a” Cos (b"nx)
(where b is an odd interger) is zero at r=1}. At this
point, the derivates on the right as well as on the left
oscillate between 00 and —oo, It follows that the
point x=14 is & limiting poiut of the zeros of the function
W(x). A set of zeros of W(x) with r=1 as a limiting
point has been actually located by G. Prasad(%).
His result in the case of the function
W(a) =3 02 CFn2)
may be stated as follows:
There is a zero of W(x) between

O (5273 ) (35550 )

(i1) “nother between

and(ii é)—)
2 13‘ 2 13- )>°

(i#1) a third betwecn

L, ( )
2 13~) 2 T 13t

* See also Sharma (75). For the zeros of Dini’s function see
Mookerji (66).
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(iv) a fourth between

G-15) =3+
2 13k 2 1.5’”

(v) = fifth between

(‘ 13'~) (2 f;k

(vi) and a sixth between

(_ 13k) (2 13k)

The above is not a complete list of all the zeros of
the function W(x). The determination of all the zeros
is probably not practically possible. Bhar (°) has
given a list of some of the zeros of the function

n Cos ( .
{185 e (2n=1) }a

= 1. 8.5. ... (2n—2)

Prasad’s result quoted above is a verification of the

conclusion that we can arrive at by a consideration of
the values of the derivates at the point x=4. It would
be interesting to find some special character of the set
of zeros, ¢.g., whether they form an enumerable set or
not, or whether the set is closed or open.

(7.2.) Very interesting results regarding the nature
of the oscillations of a non-differentiable function have
been recently obtained®* by studying the intersections
of the line y=c with the curve y=¢n,,(x) given in
the third lecture. It has been found that the roots of

*See Singh (85). For a similar study of another function see
Singh (84).
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the equation Qurp(z)=c (0 = c¢ = 1), form a set S,
which is perfect and is of zero measure. Thus the
oscillations of the function ¢,,(z) in every interval,
ever-30-small, are unenumerable. The function is thus
much more complicated than ordinary transcendental
functions which may have an enumerably infinite number
of oscillations in an interval. It may be pointed out
that by the help of such a function we can easily
express the continuum in (0, 1) as an unenumerable
aggregate of unenumerable aggregates.

8. The Set S, of the roots of ¢;:(z)=c.
I shall now find the roots of the equation ¢3;3(x)=c and
prove that they form a perfect set S; of measure zero in
the interval (0, 1). The proof for the general case can be
similary carried out. Taking the definition of @ ry(2)
given in the third lecture, we have, for values of , in
(0, 1), expressed in the scale of 3 as

.___+__+ B g oig Bonclog O g Bne1 g

3 g3 g3n-1 3 gintl
b by
$s13(x) = 3 +— 32 + et 3 + oo,

where
bl= /c"(al) =a,

+ea
ba=k 2 ay),
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a_+a +a_+a
.2 3 5 6
bs-—k (a7),

by =kogtagtastagt ooty 1y 1" %m-1)(A3(a-1)41)»
and so on; and where 4*(a)=a or (2 —a) according as

s is even or odd.

Let the constant ¢ have the following representation
when expressed in the scale of & :
C3
e= b 3 L 33 + - + =+
Then the a’s in the representatlon of

_ A3n-1 asn Azn 41
Ze= 3 + 32 + + + 331» 1 + 3321 g3n+1 +

which corresponds to the ¢,’s must satisfy the following
conditions :

a1=¢y;
and if ¢,,1=0, then a;3.,1=0 or 2 according as

7
2 (asy-1+ ay) is even or odd;

r=1
if ¢,,1=2, then a3,,1=2 or 0 according as

n
2 (age-1+ a3) is even or odd;
r=1
and if ¢,,1=1, then a;3,,1=1 whatever

n
3 (asr-1+ asy) may be.
r=1
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It is obvious that there are an infinite number of
x.’s, the a’sin whose representation satisfy the conditions
given above. The points 2, form a set S., which is the
set of the roots of ¢35 () =c¢ and which we now propose
to study.

(8.1) 8, is unenumerable. This follows from the fact
that S, is perfect.
(8.2) S.is perfect. Let

as + - A3n-1 Qa3n +“3n+1+“

a;
Ze = -+ + ’ gan-1 g3 gintl

3 32 3

be a root of ¢s,15 (v) =c.
Then the point

a

a 2 a’3n-1 a’s Qsn g1
o= Bt + Foeeecen + " - tla ..
3’_’ 3371 -1 g3n g3n+1

which differs from 2, at the (8n—1)th and 3ath places
only is also a root of ¢s13(v)=c¢, if

| (@sn-1t az)—(a’30-1+ a’3,) | =2 or 4.

By letting n tend to infinity, we see that points a’,
belonging to S, can be found as near to x, as we pleasc.
Thus z, is a limiting point of the points of S.. ¢ follows
that the sct S, is dense-in-itself.

That the set S. is closed follows from the continuity
of &3;3().

Therefore, the set S. is perfect.

(8.8) S. has zero measure. In the representation of
¢, if ¢;=0, then there are 2 intervals
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4,5 and [3,1]
in each of which there is no point of S if ¢;=1, then
there are two intervals

[0, 4] and [3,1]
in each of which there is no point of S; and similarly if
c1=22, we find that there are two intervals

3] and 3, 3]

in each of which there is no point of S..

We thus find that, whatever c; may be, there are two
intervals that do not contain points of S, and that the
sum of their lengths is 3.

Again, whatever ¢, and ¢co may be, there are besides
the two intervals of the above type, 2.3? more intervals,

each of length gli which do not contain points of S.. For

supposing c,=2, a; and a3 must respectively have the
values
1,00r0,10r1, 2o0r 2,1,
whilst a;=0, otherwise a, and as are respectively
0,00r0,20r2,00rl,1o0r2 2,
whilst a;=2. Thus (for the case c;=1, c,=2) there can
not e points of the set S; in the two intervals
1 1 0 1 1,1 ,0, 2
{?*@*?*?*?*ﬁ*?*?}
and
1 1 0, 2 1 1
{?*@*@*?‘ +?+3}
or again in the two intervals
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1 0 1 1 1 0 1 2
e e .
{3 grtgta gtatets }
and
1 0 1 2 1 0 2
I AU N N A R Al
{ statewts 3 32+33}’
and so on for all the nine cases, thus making a total of
2.32 intervals that do not contain points of S.. It
follows that whaterver ¢; and co may be, there are a set of
intervals whose total length is
2 2
— 4+ =,
3 32
which do not contain points of S,.

Similarly, it can be shown that whatever ¢y, c; and o3
may be, there are a set of intervals which do not contain
points of S, and that the sum of the lengths of these
intervals is

2 2 2
ol S B
3 32 33

Proceeding in this manner, we find that whatever
the ¢’s may be, there are a set of intervals which do not
contain points of S,, and whose measure is

2 2 2 2
5 +_§2_+ 3 +...+§; Foeeesa=1,
Therefore, S: has zero measure.

9. The Mean Differential Coefficient. If

f(z) be continuous at the point #, the mean differential
coefficient at x is the limit, if it exists, of the ratio
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f(z+h) = fa—h)

2h

as k tends to zero.

G. Prasad (%) has shown that Weierstrass’s function
possesses finite mean differential coefficients at an every-
where dense set of points. The functions defined by
Darboux (%), Lerch (%), Faber (%% ?7), Landsberg
(°1), Steinitz (%), Singh ("8 7 . %) gand Hahn 31)
possess mean differential coefficients. It has been stated
by Bhar (7) that Dini’s function 2 a"8in (6"7x) does
not possess a mean differential coeflicient. *

10. Remarks. We huve traced the gradual
development of our knowledge regsrding the nature and
properties of uon-differentiable functions, and have
discussed some of the problems that have arisen during
the course of the study of such functions. We have also
pointed out some of the advances that have been made
in other branches of the theory of functions due to that
study. But the fundamental question which the dis-
covery of non-differentiable functions has raised remains
still unanswered. It is this: ¢ What minimum restric-
tions should be placed on a function so that it will
possess a differential coefficient at each point of its
domain of definition ?’ Or, in other words, ¢ Does there

* Bhar /9), p. 80, points out a slip in his paper (7). which will
require a recasting of his proof for the non-existence of the mean
differential coefficient,
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exist a necessary and sufficient condition for the differen-
tiability of a function in an interval ?’ The question
has been engaging the attention of mathematicians
since the publication of Weierstrass's example of a non-
differentiable function in 1874, and yet we are no nearer
its solution.

It is well-known that continuity is necessary for dif-
ferentiability, but it is not sufficient as is shown by the
existence of continuous non-differentiable functions. The
restriction of bounded variation has also proved insuffi-
cient. Although a continuous function of bounded
variation must possess a differential coefficient almost
everywhere, yet there are examples of such functions
which do not possess differential coefficients at un-
enumerable everywhere dense sets of points. The same
remark applies to absolutely continuous functions. The
discovery of a necessary and sufficient condition for diffe-
rentiability will no doubt be a great advance and will, I
believe, find immediate application in geometry and in
physics. But with the present state of our knowledge
it does mnot appear to be possible to discover any such
condition. Further study of the theory of aggregates
and perhaps a closer classification of functions may give
us the key to the solution.

It has been suggested by W. H. Young and G. C.
Young that efforts should be made to evolve a definition
of differentiation, according to which all continuous
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functions would be differentiable, at least almost every-
where, and correspoudingly to find a definition of inte-
gration that would always lead back from the derivate
to the primitive function. We have seen that in the
case of non-differentiable functions the upper and lower
right (left) derivates have the values + 0o and—oo0
respectively almost everywhere. At such points,
therefore, by choosing a suitable method of approach
the incrementary ratio can be made to converge to any
desired value between+00 and—oo. The problem,
then, is to devise a method of choosing A’s which would
not only provide finite derivatives almost everywhere, but
would also suggest a corresponding integrating process,
leading from such a derivative back to the primitive
function.

A suggestion has been made by G. C. Young to use
(what she calls) the mean symmetric deriz te, which she
has defined and shown to exist in the case of a conti-
nuous function, except at an enumerable set of points;
but there is no evidence as yet to show that it has any
practical value.  The mean symmetric derivate of
Weierstrass’s function is 1 almost everywhere, and is
clearly of no particular use. Likewise the notion of the
generalised Riemann derivative of the nth order does
not appesr to take us appreciably nearer to the solution
of the problem.

The successful generalisations of the notion of integra-
tion and that of summation have shown that it is possible
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to select and utilize one out of an infinite number of
limits. In fact, if by the application of the theory of
sequences, or otherwise, we can devise some method of
selection, the plurality of Limits can be turned to an
advantage. For the solution of our problem, however,
we cannot hope much from the theory of sequences
alone. The success of the method of sequences is
intrinsically due to the mechanism of monotony, but
monotony in such & connection as this can serve no
useful purpose. It is hoped that a more profound
study of the theory of aggregates may lead to the
solution of the problem, or at least to the determination
of the limits between which the solution should lie.
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