A review of sharps

Andrés Eduardo Caicedo

We hope this short note may prove useful as a guide to the general theory of sharps. Only a knowledge of the theory of 0^\sharp is required. This note will be updated periodically, the original version was part of the introduction to the author’s dissertation [1], written under the supervision of John Steel and Hugh Woodin at U.C. Berkeley.

Definition 0.1. Let Y be a transitive set.

1. A class of indiscernibles for $L(Y), Y$ (informally, for $L(Y)$) is a class $I \subseteq \text{ORD}$ such that for all \bar{a} elements of Y and all $\alpha_1 < \cdots < \alpha_n$ and $\beta_1 < \cdots < \beta_n$ elements of I, for any $\varphi(\bar{x}, y_1, \ldots, y_n)$ in the language of set theory,

 \[
 L(Y) \models \varphi(\bar{a}, \bar{x}) \iff L(Y) \models \varphi(\bar{a}, \bar{\beta}).
 \]

2. Let $\varphi(t, x_1, \ldots, x_n)$ be a formula in the language of set theory, expanded with constant symbols for Y and the elements of Y. A weak Skolem function for φ (with respect to $L(Y), Y$) is the function $f_\varphi : {}^n L(Y) \to L(Y)$ given by

 \[
 f_\varphi(\bar{x}) = \begin{cases}
 y & \text{if } L(Y) \models y \text{ is the unique } z \text{ such that } \varphi(z, \bar{x}); \\
 \emptyset & \text{if there is no such unique } z.
 \end{cases}
 \]

3. Let $Y \subseteq Z \subseteq L(Y)$. By $\mathcal{H}(L(Y), Z)$ we mean the closure of Z under weak Skolem functions.

4. Let I be a class of indiscernibles for $L(Y), Y$. We say that I generates $L(Y)$ iff

 \[
 \mathcal{H}(L(Y), I \cup Y) = L(Y).
 \]

5. We say that Y^\sharp exists iff there is a club proper class I of indiscernibles for $L(Y), Y$ such that $I \cup Y$ generates $L(Y)$ and, moreover, for any uncountable η such that $Y \in H_\eta$, $\mathcal{H}(L(Y), (I \cap \eta) \cup Y) = L_\eta(Y)$.

6. We say that X^\sharp exists iff Y^\sharp exists, where $Y = \text{Tr. Cl.(X)}$.

Fact 0.2. If $X \in H_\eta$ and η is Ramsey, then X^\sharp exists. \hfill \Box

1We consider the language of $L(Y)$ to be expanded by constants P_a for each $a \in Y \cup \{Y\}$. The natural interpretation of P_a is, of course, the set a.

1
The assertion “X^β exists” refers to the existence of a proper class object. Solovay’s realization (see [2]) is that just as in the case of sharps for reals, this is in fact equivalent to the existence of a set, and it is this set we now call X^β.

Definition 0.3. Let Y be transitive.

1. Let \mathcal{L}_Y denote the language of set theory augmented with constants for the elements of $Y \cup \{Y\}$, and with ω many other constants c_n, $n \in \omega$, (to represent the first ω indiscernibles), and closed under terms for weak Skolem functions for formulas in the language of set theory.

2. An EM blueprint for Y (EM stands for Ehrenfeucht-Mostowski) is the theory in \mathcal{L}_Y of some structure $(L_\eta(Y), \in, P_n, i_n : a \in Y \cup \{Y\}, n \in \omega)$ where $Y \in H_\eta$ or $\eta = \text{ORD}$, and $(i_n : n < \omega)$ is the increasing enumeration of a set of indiscernibles for

$$(L_\eta(Y), \in, P_a)_{a \in Y \cup \{Y\}}.$$

3. Let Σ be an EM blueprint for Y, and let α be an ordinal. By $\Gamma(\Sigma, \alpha)$ we mean, provided that it exists and is unique (up to isomorphism), a model \mathcal{M}_α such that

(a) $\mathcal{M}_\alpha \models \Sigma^*$, the restriction of Σ to the language \mathcal{L}_Y without constants for the indiscernibles.

(b) There is a set $I \subseteq \text{ORD}^{\mathcal{M}_\alpha}$ such that $(I, \in^{\mathcal{M}_\alpha}) \cong (\alpha, \in)$ which is a set of indiscernibles for \mathcal{M}_α.

(c) $\mathcal{M}(\mathcal{M}_\alpha, I \cup \{P^{\mathcal{M}_\alpha}_a : a \in Y \cup \{Y\}\}) = \mathcal{M}_\alpha$.

4. A set of sentences $\Sigma \subseteq \mathcal{L}_Y$ is a remarkable character for Y iff

(a) Σ is an EM blueprint for Y. In fact, Σ extends “$\text{ZF} + V = L(Y)$”.

(b) $\Gamma(\Sigma, \alpha)$ exists and is well-founded for all α.

(c) For any term $t(x_0, \ldots, x_{n-1})$ in \mathcal{L}_Y, the sentence

$"t(c_0, \ldots, c_{n-1}) \in \text{ORD} \rightarrow t(c_0, \ldots, c_{n-1}) < c_n"$

belongs to Σ.

(d) For any term $t(x_0, \ldots, x_{m+n})$ in \mathcal{L}_Y, the sentence

$"t(c_0, \ldots, c_{m+n}) < c_n \rightarrow t(c_0, \ldots, c_{m+n}) = t(c_0, \ldots, c_{m-1}, c_{m+n+1}, \ldots, c_{m+2n+1})"$

belongs to Σ.

(e) Σ satisfies the witness condition:

Whenever $\exists x \phi(x) \in \Sigma$, there is a term t all of whose constants for indiscernibles already appear on $\phi(x)$, and such that $\phi(t) \in \Sigma$.

2
The witness condition is the key condition that remarkable characters for reals (or more generally for sets of ordinals) satisfy automatically, because Skolem terms are definable in $L[x]$, $x \in \mathbb{R}$, since $L[x]$ has a definable well-ordering. Its importance lies in that it allows us to prove the following basic fact:

Lemma 0.4 (Solovay). If Σ is a remarkable character for a transitive set Y, then

1. For all α, the sequence I^α of indiscernibles of $\Gamma(\Sigma, \alpha)$ with
 \[(I^\alpha, \in^{\Gamma(\Sigma, \alpha)}) \cong (\alpha, \in) \]
 satisfies that for any formula $\varphi(x_1, \ldots, x_n)$ in the language \mathcal{L}_Y,
 \[\varphi(c_1, \ldots, c_n) \in \Sigma \]
 iff there is a $e \in \Gamma(\Sigma, \alpha)$-increasing sequence a_1, \ldots, a_n of elements of I^α such that $\Gamma(\Sigma, \alpha) \models \varphi(a_1, \ldots, a_n)$.
2. For any cardinal η such that $Y \in H_\eta$,
 \[\Gamma(\Sigma, \eta) \cong L_\eta(Y). \]
3. For all α, I^α is closed unbounded in $\text{ORD}^{\Gamma(\Sigma, \alpha)}$.
4. If $\alpha < \beta$, then I^β end-extends I^α (seen as subsets of $\text{ORD}^{L_\eta(Y)}$ for any cardinal η such that $\beta, Y \in H_\eta$.)
5. For any η such that $Y \in H_\eta$,
 \[\mathcal{H}(L(Y), I^\alpha \cup Y) = L_\eta(Y) \prec \mathcal{H}(L(Y), \bigcup_{\alpha \in \eta} I^\alpha \cup Y) = L(Y). \]
6. Let Σ' be any remarkable character for Y. Then $\Sigma' = \Sigma$. □

Corollary 0.5 (Solovay). Let Y be transitive. Then Y^\sharp exists iff there is a remarkable character for Y. □

Remark 0.6. In truth, Solovay only argued these results for sharps of sets of reals (or, more precisely, for \mathbb{R}^\sharp), but the arguments for 0^\sharp lift straightforwardly.

It follows that it makes sense to define sharps in terms of the remarkable characters whose existence they guarantee:

Definition 0.7. Let X be a set and let Y be its transitive closure. Then $X^\sharp := \Sigma$, for Σ the unique remarkable character for Y.

See [2], where the general notion of sharps is introduced, in the context of subsets of reals.

Notice the definition of Y^\sharp is absolute in the sense that if $W \supseteq V$ is an outer model and $Y^\sharp \in V$, then $W \models (Y^\sharp)^V = Y^\sharp$.

The following is ancient, but I have been unable to find a reference:
Fact 0.8. Let \mathbb{P} be a poset, and suppose $x^\sharp \in V^\mathbb{P}$, where x is a real coding a set $X \in V$. Then $X^\sharp \in V$. □

It follows from the fact that Jensen’s covering lemma relativizes to all sharps, so $L[X]$ satisfies covering above η, where $X \in H_\eta$, iff X^\sharp does not exist. Since set sized forcing preserves a tail of the class of cardinals, if \mathbb{P} is a poset and X^\sharp exists in $V^\mathbb{P}$, then X^\sharp exists in V.

Fact 0.9 (Solovay). If X^\sharp exists, then the truth sets of $L(X)$ and $L[X]$ are definable. □

The following example must be folklore, it was shown to me by Woodin. It illustrates that we cannot make do in the definition of X^\sharp without the witness condition:

Recall first that after adding ω_1 Cohen reals, no well-ordering of \mathbb{R} belongs to $L(\mathbb{R})$. This follows immediately from the weak homogeneity of the forcing, call it \mathbb{P}, and the fact that \mathbb{P} is ccc and $\mathbb{P} \cong \mathbb{P} \times \mathbb{P}$. From this, an elementary argument shows that, in fact, there is in $V^\mathbb{P}$ a set $\mathbb{R}_1 \subsetneq \mathbb{R}^{V^\mathbb{P}}$ and an elementary embedding $j : L(\mathbb{R}_1) \rightarrow L(\mathbb{R}^{V^\mathbb{P}})$ that fixes the ordinals, so in particular Choice fails in $L(\mathbb{R}^{V^\mathbb{P}})$ and the result follows.

Claim 0.10. Let $V = L[\mu]$ be the smallest inner model for a measurable cardinal and let G be $\operatorname{Add}(\omega, \omega_1)$-generic over V. Then

1. $(\mathbb{R}^\sharp)^{V[G]}$ exists.
2. $(\mathbb{R}^\sharp)^{V[G]} \cap V \in V$.
3. $(\mathbb{R}^\sharp)^{V[G]} \cap V$ satisfies conditions 4.(a)–(d) of Definition 0.3 for $(\mathbb{R}^\sharp)^V$.

□

If we could dispense with the witness condition in Definition 0.3, it would follow from the claim that $\mathbb{R}^{L[\mu]}$ is not well-orderable by a well-ordering in $L(\mathbb{R}^{L[\mu]})$. This is absurd, since in fact $\mathbb{R}^{L[\mu]}$ admits a Δ_3-well-ordering.

Remark 0.11. Of course, the same arguments generalize to larger sharp-like objects, like daggers or pistols.

The theory of sharps is usually recalled in connection with finestructural arguments. In this context, X^\sharp is usually defined as a particular kind of mouse.

Fact 0.12. Let X be a set. Then X^\sharp exists iff there is an active X-mouse. □

There is therefore no lack of generality in using this approach. We actually obtain quite more information than what was stated in Fact 0.12. For example, by standard techniques a mouse as in 0.12 is unique if it exists, and so we can identify it with X^\sharp. Moreover, for example if $x \in \mathbb{R}$, x^\sharp and the minimal active x-mouse share the same Turing degree.
References
