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Abstract

Well-orderings of the reals are an important
tool in the investigation of the set theoretic
structure of the real line. On the other hand,
they exhibit pathological properties from the

point of view of analysis.

The results in this talk explore the tension

resulting from expecting nice properties of

naturally defined classes of sets of reals, and
the existence of simply definable

well-orderings.




I. Preliminaries

Recall:

Definition 1. Let (X, <) be a totally ordered set.
Then X is well-ordered by < (or, < is a
well-ordering of X ) iff

VWWCX0#AY =Y EVe(z#y —y<2)).

Le., X 1s well-ordered iff every non-empty subset
of X has a first element.

Definition 2. AC (The axiom of Choice):

FEvery set can be well-ordered.

In this talk we will work within the framework of
the usual system for set theory, ZFC. In
particular, AC holds.




Any two well-ordered sets (X, <) and (Y, <) can
be compared in the following sense:

Exactly one of the following three situations
holds:

e There is an order-preserving bijection
f: X =Y.

e There is a y € Y and an order-preserving
bijection f: X — {z€Y:2 <y}

e There is an x € X and an order-preserving
bijection f: {w e X :w<ax} —Y.

I.e., one of X, Y is (via a renaming of its

elements) an initial segment of the other.




There is a canonical system of well-ordered sets,
the ordinals. Every well-ordered set is isomorphic

to one of them.

Definition 3. « is an ordinal iff («, €) is

well-ordered, and transitive: 3 € v € a — 3 € a.

Let «, 0 be ordinals. Say that o < 3 iff there is
an order preserving bijection from « into a proper

initial segment of 3.

e o< Jiff a € (.




e The first ordinal is . We call it O.

e (Given an ordinal «, there is a first ordinal (3
such that a < 3, namely § = aU {a}. We
call this ordinal o + 1.

e Hence, we identify the first few ordinals (the

finite ordinals) with the natural numbers:
— 0 =90,

- 1={0} = {0},

- 2=A{0,{0}} ={0,1},...

But the ordinals do not stop here.




w=1410,1,2,...} is the first infinite ordinal.

The first ordinal larger than w is w + 1. Then
we have
w+2, w43, ..., wtw, w+w+l, ... wtwtw,...

There is no largest ordinal. Given any
collection S of ordinals, the set

U{a—l—l:aES}

is an ordinal larger than all the elements of S.

Since every set can be well-ordered, there are
arbitrarily large ordinals.




The reason why ordinals and well-orders are

useful is because they allow us to carry out

arguments and constructions by induction, even if

these inductions take longer than w many steps.

We talk of transfinite induction in this setting.
Definition 4. e I[f an ordinal has the form

a+ 1 we say it 15 successor.
o /f o> 0 is not successor, we say it is limit.

For example, w and w 4+ w are limit ordinals.




Example 1. Let XV denote the collection of open
subsets of R, and define

e TI) = the collection of complements of sets in

Ua<r {]g for X limit.

g+1 :{UnAn:AnEHg}-

Let B=_ %% = 1. Then B is the

collection of Borel subsets of R.




The cardinal of a set is the set theoretic measure
of its size. As in the Principia, we can think of
the cardinality of X as the class of all sets
bijective to X. By Choice, there is a more
canonical way of defining cardinals.

Definition 5. Let X be a set. Let o be the
smallest ordinal such that there is a bijection
f: X — a. Then we call o = |X| the cardinality

of X, and we say that o 1s a cardinal number.
e All finite ordinals are cardinals.

e ( is the first infinite cardinal. We also write
Ng for w.

All the ordinals

w,w+ 1, . wtw, . u

are countable.

The first uncountable ordinal is w; = Ny.




(Cantor) Given any cardinal x there is always

a larger one, namely 2% = |P(k)|.

The smallest cardinal larger than x is denoted
by k1.

The function a — N, enumerates the infinite
cardinals. Thus, Ng = w, 8; = w™. Similarly,
Ny = N, N3 =R, N, =sup{N, :n <w}l,
etc.

(CH ) The continuum hypothesis is the
assertion that 280 = N;. Equivalently, for any
infinite subset X of R there is a bijection

f : X — N or else there is a bijection
g: X — R

We denote 2% by .

(GCH ) For all infinite cardinals x, 2% = k™.




The standard picture of the set theoretic universe
imagines the ordinals as given, and defines an
increasing collection of sets inductively, as follows:

o 1 =10.
® Vatl = T(‘/oz)

e V\ =U,) Vo for A limit.

Then V' = [J_ V4 is the universe of sets. Every set
x belongs to some V. The least such a we call
the rank of x, rk (z).







Definition 6. e Let o be an ordinal. Its
cofinality s the least 5 such that there is an

increasing f : 3 — a which s cofinal, i.e.,

Vy € adbe By < f(9))

We write cf () for its cofinality.
o An ordinal a is regular iff a = cf («).

o Otherwise, it 1s singular.

So, cf (a + 1) = 1. This is not interesting, and we

only care about the cofinality of limit ordinals.

o If o is regular, then « is a cardinal.




w 18 regular.

If x is an infinite cardinal, k™ is regular.

0

In particular, B = (J,_y, Za-

o cf(N,) =w.
Definition 7. A cardinal X is limit iff it is N
for some limit ordinal 3. If it is of the form N,

we say 1t 18 Succesor.

A regqular limit cardinal is called weakly

inaccessible.

Weakly inaccessibles are big. For example, if « is

inaccessible, then x = N,, and « is the x"'-cardinal
A such that A = Ny.




II. Negative results

It is the working assumption of set theorists that
sets of reals whose existence is solely granted by
the Axiom of Choice are in general pathological,
as opposed to those which can be ‘explicitly’
defined. A well-ordering of the reals (w.o.) is an
example of such sets. Choice guarantees that the
reals can be well-ordered, but no w.o. is Lebesgue

measurable or has the Baire property.




Example 2 (Sierpinski). Suppose CH holds.
Under this assumption, we can arrange the reals
on a list (xq : o < Ny ). The induced

well-ordering

W ={(2a,r5) :a< 8}

1s not Lebesque measurable.

Remark. The result holds without any extra
assumptions: We do not need CH, and the

well-ordering does not need to be of o.t. c.







Proof For a < w; let S, ={23:0 <a} and

S ={zp: 0 > a}. Similarly, for x € R define 5,
as S,, where r = z,, and do the same for S*. Let
1(X) denote the Lebesgue measure of the set X.

If W is measurable, it has measure 0, because

W= /u(%)dy,

and each S5, being countable, has measure zero.

On the other hand,

W = /,u(Sw) dx

has full measure, since each S* has full measure.

Contradiction. ]




A natural question to ask is how difficult is to

define a w.o.

Of course, the answer depends superficially on
what is meant by R.

In set theory, we usually think of the reals mostly
in terms of their coding potential, and therefore it
is irrelevant whether R denotes

e The Euclidean reals.

e WY =R\Q.

o 2% = The Cantor set.
e |w]¥, the infinite subsets of w.

It turns out that the answer is independent of our

choice.




All the spaces listed above are standard Borel
spaces. The usual proof of the Cantor-Bendixon
theorem actually shows that all of them have

isomorphic Borel structures, the isomorphism

given in each case by a Borel function. The

isomorphism also identifies their natural

continuous Borel measures.




II.a. Hierarchy of definability.

Define B(w®), B(2%), etc, exactly as for the case
of R. So ¥ makes sense in any of these spaces.

° Un Z% is the class of arithmetic sets (in any

of these spaces), i.e., letting R stand for any
uncountable standard Borel spaces, sets of
the form

{reR:wl=p(ry)}
where y € R and ¢ is first order.
e All Borel sets are Lebesgue measurable.

So no w.o. can be defined arithmetically.




Definition 8. (With R any uncountable standard
Borel space) A set X C R is

Al (n>0) iff it is ¥} and II. .

1. iff its complement is 3. .

Y

N1 iff it is the continuous image of a Borel
set.

1 cpp e, - . . 1
Y41 tff it is the continuous 1mage of a II,,

Y

set.

Equivalently, X is ¥} iff

X={yeR:wkE InnVy... o(y1,. ... Yn,¥y,2) }

n alternations

where y1,...,y, range over R, z € R and ¢ is first
order.
Definition 9. X is projective iff it is X\ for

some n.

The same definitions apply for subsets of R*,
k> 1.




e Any ¥ set of reals is Lebesgue measurable,
and therefore cannot be a w.o.
How difficult it is to define a w.o. is heavily

dependent on the particular universe of sets one

considers.




II.b. Inner Models

For example, in Godel’s constructible universe L,

the reals admit a w.o. whose complexity is 3.

On the other hand, if the reals admit a w.o. of
such complexity, then there is a real x such that
every real belongs to the universe constructible

from x.

Definition 10. Let X be a set. L[ X], the
universe constructible from X, is defined by

induction:
o [o[X]=0.
o L\ X]=U,crLalX] for X limat.
o Lo1|X]|={y C L, X]|:y is first order

definable (from parameters) in
(Lo[X], €, X N Ly [X]) }.

o LIX]=UqLalX].







Superficially, V' could be L[X] for some X:
e Let Y = XN L[X]. Then

LIX]=L[Y] =V = L[Y].

e L|X]| E ZFC, the standard list of axioms for
set theory.

This is superficial, because the list ZFC is
incomplete; it does not include axioms that the
set theoretic community now regards as true, but
that imply, for example, that V' # L[X] for any
X.

Godel’s constructible universe is L = L[f)].




Theorem 1 (Godel). If V = L, then there is a
Y5 well-ordering of the reals. In fact, the

well-ordering is 33, i.e., no parameters are

required.

Proof (Sketch) 1. Suppose x € L. Then there is
« such that x € L, and L, EFV = L. Let

X < L, with x € X and X countable. Then

X = Lg for some countable 3. Let 7 : X — Lg be
the unique isomorphism. Then 7(z) = x. Thus,

x € Lg.

(This shows L = CH.)

2. Fixing some ordering of formulas, let x < y, for
x,y € L iff ‘There are reals z1, 2o coding
well-orderings of w (in o.t. a < 3, respectively,)
and there are reals vy, y2 such that y; codes L,
Yo codes Lg, x € L,, y € Lg, and if o = 3, then
the formula defining x comes first than that
defining y (and if the formulas are the same, then

the parameters for x come first).” [




II.c. Large Cardinals

A ¥5 w.o. is ruled out as soon as

Vo dy (y ¢ Llx])

holds.

This is a consequence of the existence of large

cardinals.

e The simplest example of a large cardinal is an

inaccessible.

There is no formal definition of large cardinal, but
there are certain generalities a large cardinal &

must satisfy. For example, we expect

o V. = ZFC (Weakly inaccessibles have this
property if GCH holds.)

e In fact, we expect s to capture properties of
V' which cannot be expressed in a first order

fashion.




The standard way of formalizing our last claim is
via reflection principles. The standard way of

generating reflection is via elementary embeddings.

Definition 11. An elementary embedding
j:V — M is a map between (V,€) and some
proper class (M, E) such that j is elementary for

formulas in the language of set theory.

Definition 12. k is measurable iff there is an
elementary embedding 9 : V — M with M
transitive (i.e., X € Y € M implies X € M, and
E is just € [y ) and with critical point k.

The critical point cp(j) of j is the first ordinal «
such that j(a) # a. It is a consequence of choice
that if 7 : V — M is elementary and M is

transitive, then cp(j) exists, or else 7 = id.




Large cardinals are usually defined by
strengthening the requirement of measurability,
for example, by asking M to be ‘wide’ enough to
resemble V' to some extent.

The recipe for getting reflection from these

strengthenings is as follows:

Suppose j : V — M is an elementary
embedding with M transitive and critical

point k.

Suppose k has some property .
Suppose M resembles enough of V' so
M = o(r).

Then M = Ja < j(k) p(a).

By elementarity, da < & p(a).

I.e., we have reflected p from k to ordinals smaller
than k.

Warning. We should not expect the resemblance

to be as strong as we wish. V' = M is impossible.




Example 3. Let k be measurable, let 3 : V — M
be a witness, and let x be a real. Then Kk > w

because w is definable. Hence, j(x) = x.

Moreover, jlp, : Llz] — Llz]. Therefore,

V # Llx|. In fact, from the existence of j a real
2 can be defined such that the set of true
sentences of (L[z], €, x) is computable from z*.
By Tarski’s result on the undefinability of truth,
z* ¢ Llz]. Hence, for each real x there is a real y
not in L[x]. Thus, there is no N5 w.o. of R.

Even more is true: All ©5 sets are Lebesgue

measurable.




II.d. Inner Models

for Large Cardinals

Analogues of the L[ X]| models have been defined
that allow for the existence of cardinals with large
cardinal properties much stronger than

measurability.

It is expected that all large cardinals set theorists
study will be eventually ‘captured’ by one of these

inner models.




Rather than defining these models, we list some
of their features.

e They resemble L. For example, they are
minimal models of the large cardinal

assumption under consideration.
e They satisty GCH.

e They are finestructural.

Example 4. The analogue of L for a measurable

has the form L|u], where u codes the embedding

witnessing measurability. Any other model L{u']
can be recovered from L{u] by iterating the

embedding.




The finestructural requirements ensure that the
argument we gave for the case of L generalizes so
the reals of these models have a w.o. which is
simply definable. Exactly how simple depends on
the specific large cardinals the model was

designed to capture.

e [ is obtained as the ‘limit’ of its building
blocks L. Oversimplifying, finestructural
models are the limit of models of the form

Lo[E], where E codes a sequence of

embeddings.

A key step in the argument for L was that
any model ‘resembling’ an L, (e.g., the
collapse of a Skolem hull) had to be an L.
This is no longer the case, but any 2 models
‘resembling’ an Lo[E] can be successfully

compared.

The problem of obtaining a simple w.o. in a
finestructural model reduces then to giving a
simple definition for the comparison process.




If the models do not capture significant large
cardinals, the comparison is relatively simple. In
fact, if the models do not contain Woodin

cardinals, their natural w.o. is ¥3.

On the other hand:
Theorem 2 (Martin, Steel). 1. Let M, be

the minimal finestructural model for n

Woodin cardinals. Then the reals of M,

admit a 2711+3-w.0.

. If there are n Woodin cardinals with a

measurable above, then all Z}ﬁz-sets are

Lebesgue measurable.

. Therefore, there are no projective
well-orderings if there are w Woodin

cardinals.




Definition 13. Let X be a transitive set. L(X) is
defined exactly as L|X], except that Lo(X) = X.

L(X) is a model of Choice iff X is well-orderable
in L(X). For example, L(RR) is a model of Choice
iff R is well-orderable via a w.o. in L(R).

L(R) contains all projective sets, thus the
existence of a w.o. in L(R) is in the presence of
large cardinals an alternative to the existence of a
projective w.o.

Theorem 3 (Woodin). If there are w Woodins

with a measurable above then L(R) is not a model

of Choice.




If no projective set can be a w.o., our next target
must be the ¥? sets.

Definition 14. 1. A set of reals is TI> iff its

complement is 12 .

2. A set X is 2 iff we can write

X = {yERZw |: \E|X1\V/X2..;QO<X),CU,?J>}

n alternations

where the X; are sets of reals, x € R, and ¢ is

projective.

Remark. An alternative, equivalent definition, is

obtained by looking at definability over H,, .




Theorem 4 (Woodin). Suppose there is a
proper class of measurable Woodin cardinals.

Then all % sets are Lebesque measurable,

provided that CH holds.

In fact, under the hypothesis of the theorem (and
CH) a much stronger statement holds:

The Y7 sets are determined, and the ¥? theory of

the reals is generically invariant with respect to

extensions satisfying CH.

Until very recently this was the upper bound for
provable negative results.




Definition 15. Let p(x1,...,x,) be a formula.
Let A C R. The A-Neeman game given by ¢ 1S as

follows:

Two players I and I1 alternate playing digits

ao € 2 for wi many moves, to form a set a € 2*1.

I wins iff there is a closed unbounded set C' C wy
such that for all cqn < --- < a, 10 C

(Hy,,€,a,A) Epla,...,ay).

Here, H,, 1s the collection of all X such that
{(X}uXulUXulUUXu... is countable.

The game 1s determined iff either player has a

winning strateqy.




Building on results of Neeman, Woodin recently

announced:

Theorem 5. Suppose there is a proper class of
supercompact cardinals. Let I'>° be the collection
of all A C R such that A is universally Baaire.

o Suppose for each A € I'>™°, ZFC ¢ “All

A-Neeman Games are determined”.

Then the 33 theory of reals is generically

invariant with respect to extensions satisfying <.

As an immediate consequence, if the hypothesis of

the theorem holds, then no w.o. can be ¥3, in the

presence of .




II1. Positive Results

If the universe lacks a significant large cardinal
structure, then it is possible to enlarge it, by the

technique of forcing, to obtain a projective w.o.

o If R = R™?] the reals of L[x] for some real z,
then R admits a Y2 (2)-w.o.

Even better:

Theorem 6 (Harrington). Suppose w; = w{;[a:]

for some real x. Then there is a forcing extension

of the universe with a Ys-w.o.




We can improve Harrington’s result in an optimal
way:

Definition 16. k is strong iff for all X there is
an elementary embedding 5 : V — M with M
transitive, cp(j) =k and X € M.

Theorem 7. Suppose there is no inner model
M CV such that

M = There are w strong cardinals.

Then there 1s a forcing extension with a projective

w.o.

In fact, under the hypothesis of the theorem, the
core model IX, a finestructural model, can be

defined. Let n be the number of strongs in K.

Then the w.o. we obtain is ¥, , 5.




This result is optimal due to the following result:

e Let H be Add(w,wq)-generic over V. Then no
w.o. of RV belongs to L(R)Y 7],
Theorem 8 (Woodin). Suppose there are n
strong cardinals. Let X be larger than all of them.
Let G be Coll(w, < A)-generic over V. Then the
Z}ﬁz theory of the reals (with parameters from
RYIE) cannot be changed by set forcing. In

particular, no extension of the universe V|G|

admits a Z}Wz-w.o.




On the other hand, if we content ourselves with
looking at forcing extensions of inner models,
then some improvements are possible (nice
behavior of simpler projective pointclasses can be
imposed). For example:

Theorem 9 (Friedman, Schindler). Letn > 0
and let M™ be the minimal inner model with n

strongs and an inaccessible above. Then there is a

forcing extension of M™ in which all 2711+3 sets

are Lebesque measurable and there is a 3, 5-w.o.




Besides large cardinal axioms, ZFC is usually
extended via forcing axioms, which are intended
to formalize the idea that V is complete. The

most popular of these axioms in Martin’s axiom,
MA.

Theorem 10 (Harrington). There is a forcing

extension of L where MA holds and there is a

Zé-w.o.




We can improve Harrington’s result as well:

Theorem 11. Let M be the minimum inner
model with a strong. Then there is a forcing

extension of M where the following hold:
e SPFA(¢).

o Woodin's Yac.

e There is a X}-w.o.

This result cannot be improved much. For
example, MM(¢) implies Projective Determinacy,
PD, and therefore is incompatible with the

existence of a projective w.o.




Without restricting the large cardinal structure of

the universe, no w.o. in L(R) is to be expected.
With CH, no w.o. can be 2.
Theorem 12 (Abraham, Shelah). There is a

forcing extension of the universe satisfying CH

where the reals admit a ¥3-w.o.

It must be mentioned that <} fails hopelessly in
the model of the theorem, due to the restrictions
on Suslin trees that their coding technique

requires. By Woodin’s 33-absoluteness theorem,

this is to be expected.




If CH fails, the result can be improved:
Theorem 13 (Woodin). Suppose there is a

weakly compact cardinal k. Then there is a

forcing extension where ¢ = k, MA(o-centered)

holds, and there is a ¥%-w.o.

Theorem 14 (Abraham, Shelah). Let k be the
first inaccessible. Then there is a forcing
extension where ¢ = k, MA holds, and there is a

2-w.o.

Remark. The published version of this result
claims that = can be any inaccessible, but the

argument given there requires x to be the first.




At the cost of a small value of ¢, the large
cardinals are superfluous:
Theorem 15 (Solovay). There is a forcing

extension where ¢ = Ny, MA(o-centered) holds,

and there is a X% -w.o.

This can be improved:
Theorem 16 (Abraham, Shelah). Solovay’s

result can be obtained with MA.




Our last example follows a different direction:
Definition 17. ¢ is real valued measurable iff
there is a probability measure on P([0, 1])

extending Lebesqgue measure, which 1s c-complete.

Theorem 17. If ¢ is real valued measurable, then

1. ¢ is weakly inaccessible, and the ¢-weakly

inaccessible.
2. MA,, fails.
8. There is no w.o. in L(R).

Part 3 of the theorem follows from a
characterization in terms of elementary
embeddings, due to Solovay.




Theorem 18. Let k be measurable. Then there is
a forcing extension of the universe where ¢ = Kk 18

real valued measurable and there is a ¥5-w.o.

If the universe is small, then the result can be
improved:

Theorem 19 (Woodin). If V = L{u|, the
minimal model for a measurable, then there is an

extension where ¢ 1s real valued measurable and

there is a X% -w.o.
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