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I. Algebras of Continuous Functions

Definition 1 An algebra is a (real or complez)
vector space with a multiplication - (and possibly
with extra structure)

such that

A (Vz,y,2) ( z(yz) = (zy)z,
z(y + 2) = zy + z2,
and (z +y)z =zz+yz ).




Let < be a partial ordering of A. Denote by AT
or AT the nonnegative elements of A:

At={a€eA: AE=a>0}.

We say that A is an ordered algebra if and only if

Al (Vz,y,2) (z<y— z+2z2<y+zand
z+z<z+Y)

and ab € AT whenever a,b € AT.




An algebra A is normable if and only if there is a
map || - || : A — RT such that for all a,b € A and

all scalars r,

raf = |rl]

a+ b|| <

abl| < ||a]

a|| >0, ||a]| = 0 only for a = 0;

all;

lall + [|6]l; and

151]-

Tt is unital if and only if there is an element 1 € A

such that

Al Nz)zl = 1z.=z.

If A is normable, it can be assumed that ||1|| = 1.

It is a Banach

algebra if and only if, moreover,

(A, ] - ]|) is complete.

All the algebras we consider are assumed to be

commutative.




In this talk, we restrict our attention to a specific
kind of algebras: The spaces C (X) of continuous,
and C®(X) of continuous and bounded,
real-valued functions with domain a topological

space X, and their quotients.

C(X) and C°(X) are ordered algebras under the

ordering
f<ge (VzeX)f(z) <g()

The first result is that we can restrict our
attention to the case where X is completely
regular.




Theorem 1 For any topological space X there 1s
a completely regular space Y and a continuous

surjection

7T: X—-Y

such that the map g — go T is an isomorphism of
C(Y) onto C(X) and of Cb(Y) onto C°(X).

Proof For z,y € X, say = ~ y if and only if
f(z) = f(y) for all f € C(X). Let

Y =X/ ~

and let 7 be the quotient map. Turn Y into a
completely regular topological space by endowing
it with the weak topology induced by

C={ge¥R:goTeC(X)}
that is, the smallest topology for which

C c C(Y).

This works. [



From now on, all our spaces are

completely regular.
Let me recall some standard constructions:

Let A be a real or complex algebra. A character
on A is a homomorphism from A onto R or C,
respectively.

Definition 2 ® 4 is the space of characters on A.

If A is a complex Banach algebra, then
® 4 C C(A,C) and |||l <1 for each g € P4, so
® 4 is a subset of the closed unit ball of A’.

The weak-* topology on A’ makes ® 4 a locally
compact space. For A unital, it is in fact compact

and nonempty.




Definition 3 Let A be a unital complex Banach
algebra. The Gelfand transform of A 1s the
homomorphism “: A — C (P 4,C) given by

a(p) = p(a) for all p € D 4.

Let || - ||x be the sup norm. Then
(C%X,C), || - llx) is a Banach algebra.

Notice that ®cs(x,c) # 0; for example, let z € X,
and define @, by

p<(f) = f(z).
Then Yz € QC"(X,C)'

Theorem 2 ®cs(x,c) = 0X, the Stone-Cech
compactification of X. The Gelfand transform
f o f is an isometric isomorphism between

C%X,C) and C(BX,C). O




I1. Ideals and Filters

We are interested in quotients of C(X) given by
(proper) ideals. The most useful ideals for our
purposes satisfy an extra condition defined in
terms of zero sets.

Definition 4 For f € C(X), the zero set of f is

Z,(X) =2(f) = {z € X : f(z) =0}.
For I an ideal in C(X), let
Z[I={Z(f): fel},
and write Z(X) = Z[C(X)].

Example 1 If X is a metric space, then Z(X) is
the family of closed subsets of X.




Definition 5 A nonempty F C Z(X) is a z-filter
if and only if:

1. 0 ¢ F,
2. FlﬂFgefforFl,erf, and
3. f FEF and F C G € Z(X), then G € F.

A z-filter U mazimal under inclusion is called a

z-ultraﬁlter.

Example 2 If X is discrete, C(X) = *R and
Z(X) = P(X), so a z-filter is just a filter in the
Boolean algebra (P(X), C).

Definition 6 For F a z-filter on X, set

Z7UF={feC(X):Z(f) e F}.




Theorem 3 Let I be an ideal in C(X) and F a
z-filter on X. Then

o Z[I] is a z-filter.

o I CZ71Z[I]).

o Z71[F] is an ideal.
o F=Z[Z7[F])]. O

Definition 7 A z-ideal I is one such that

I =Z7Z[1]].

So, I is a z-ideal if and only if g € I whenever
Z(f) = Z(g) for some f € I.

Not all ideals are z-ideals; for example, let X =R
and I = (id). Then

Z7Z[N={f€CR): f(0)=0}2 I




Theorem 4 Let I be an ideal in C(X) and F a
z-filter on X. Then

o Z71[F] is a z-ideal.

o Z71Z[I]] is the minimum z-ideal containing
I. O

Any maximal ideal M is a z-ideal.

Theorem 5 Let M be a mazimal ideal and U a
z-ultrafilter. Then

o Z[M] is a z-ultrafilter.

o Z7'[U] is a mazimal ideal. O




For Z € Z(X), let cl(Z) denote its closure inside
BX. For any Zy,Z, € Z(X), it is the case that

C];(Zl N Zz) = C1Z1 N C1Z2.
Thus, if U is a z-ultrafilter on X,
G={clZ:ZecU}

has the finite intersection property. By
maximality of U,

(16 = {pu}

is a singleton.

For p € B X,
U, ={Z e€Z(X):peclZ}
is a z-ultrafilter on X.

Theorem 6 (Gelfand-Kolmogorov) The
correspondence U < p is a bijection, and so the
points of BX correspond to the mazimal ideals of

c(X). O




ITI. Quotients

Let A be an algebra; I an ideal in 4; and S C A
a non-empty set, disjoint from I, and closed
under multiplication. Then there is a prime ideal
QwithICcQand QNS =0.

Thus, the intersection of all the prime ideals
extending I is the set of elements of which some

power belongs to I.

Prime ideals are particularly useful, because if P
is prime in A, then A/P is an integral domain.

In the case A = C(X), we can say a great deal
about its prime ideals. For example:




Theorem 7 Let P be a prime ideal in C(X).

1. For any f € C(X), either f € fT + P, or
fef +P.

2. The prime ideals containing P are totally

ordered by inclusion.

3. Any z-ideal containing P is a prime tdeal.

4. There is a unigue mazimal ideal containing P.

Proof We give a proof of 1. and 3.
1. f=ft+f",but ftf-=0¢€P.

3. Suppose I D P is a z-ideal. Since
Z(f™)=Z(f) for all f and n € N, I is the
intersection of all the prime ideals containing
it. But by 2., this set is a chain. Hence, I is

prime. [J




Definition 8 Let P be prime in C(X). Then
Ap =C(X)/P.

Let wp be the quotient map. For a,b € Ap, say
that a > b if and only if there are f,g € C(X)
with f —g € C(X)*, a = np(f) and b= 7p(b).

Ap so defined, is a commutative, unital algebra.

< is a total ordering of Ap, because since

7p(f) € {np(ft),7p(f~)} for any f, then either
wp(f) >0 or mp(f) < 0.

Clearly, (Ap, <) is an ordered algebra.

In the case P is actually maximal, much more can
be said:




If M is a maximal ideal in C(X), then A4 is an
integral domain with no non-trivial ideals. Thus,
it is a field. We identify R with the obvious copy
of it inside A .-

Definition 9 Let K be a field properly extending
R. K is hyper-real if and only if K is isomorphic
(via a map firing R) to some Art with M
mazimal in some C(X).

Example 3 Let X be discrete, and let M be
mazimal in C(X) = X*R. Let U = Z[M]. Then U

is an ultrafilter on X and

Am =]RX/U

is the ultrapower of R by U.




Many features of this example hold in general:

Theorem 8 Let M be mazximal. Then Ap s a
real-closed field. [

In fact, Lo§’s theorem holds:

Theorem 9 Let M be mazimal, and set
U = Z[M]. For any f1,...,fn € AMm and any
formula ¢ in the language of ordered rings,

Am F ¢(7TM(f1),~--,7TM(fn)) =

{a:EX:R}qu(fl(x),...,fn(m))} eU.

Proof For atomic formulas this is immediate
from the definition. The inductive step for A and

— are clear.

Since A is a real-closed field, any formula ¢ is
equivalent to a quantifier-free formula ¢'. This

implies the result. [




Also, as in the case of ultrapowers, hyper-real
fields are N;-saturated. We are mainly concerned

with a consequence of saturation:

Definition 10 Let (P, <) be a totally ordered sel.
Say that P is an n1-set whenever, for all countable

S1,S2 C P, if
(Vz € S1)(Vy € S2)P =z <,
then there is some s € P such that
(Vz € S1)(Vy € S2) Pz <s<y.

Theorem 10 Let K be a hyper-real field. Then
K is an m-set. U

Theorem 11 [1] Let K be a real-closed, M -field.

Then
K| = |K[*. O

Theorem 12 [1] Let x be a cardinal such that
«No — . Then there is a hyper-real field K such
that |[K| =x. U

19



Corollary 1 [1] Assume GCH. Then not every
hyper-real field is an ultrapower.

Proof Let x = 1,,. Then k™ = x and there are

hyper-real fields of size k.

Under GCH, results of Keisler and Prikry imply
that for any ultrapower K of R, if |K| =k > ¢,

then k™ = k.

Since, by Konig’s lemma, Jﬁi > 1, , the result
follows. [




Open question:

e (Without extra assumptions) are there
hyper-real fields which are not ultrapowers?

Arguing as above, a strong positive answer would

be a consequence of:

e Let k be a strong limit cardinal of cofinality
bigger than w. Then no ultrapower of R has size

K.

Unfortunately, such a general statement does not
hold. Shelah and Jin [6] have shown that is
consistent to have counterexamples assuming the
- existence of supercompact cardinals.

It would suffice to show that no ultraproduct of R
can have size k for k singular strong limit of
cofinality wy. But even the case k = J,, is still

open.




Theorem 13 (CH) Let U and V be nonprincipal
ultrafilters on N. Then

RN /U =RY/V.

Proof Being hyper-real fields, both fields are
real-closed n;-sets. Since |RN| = ¢, they both have

size C.

Let K be a real-closed field with transcendence
basis over R of size at most ®;. Say
{as : 0 <ws } is such a basis. Define inductively

o Ko =R

e K,.1 C K is the real-closure of K,(aa), i-€.,
K41 is real-closed and algebraic over
Kq(ae)-

o Ky =|J{Kqs:a <A} for A limit.
Thus, K =, Ka-




A (somewhat careful) back-and-forth argument
using such a representation for K = RN /i/ and
K = RN/V completes the proof, once we show
that every hyper-real field has transcendence
degree over R at least .

But this follows easily: Let R C R be a vector
space basis for R over Q. Let K be a hyper-real
field, and let u € K be infinitely large. Then

{u":r€e R}

is algebraically independent over R; in effect, if

p(X], 500 ,Xk) = ZasXI‘s,l . .X;:s’k
s=1

is a nonzero polynomial in R[X}, ..., Xi], then
lp(u™, ..., u")| is infinitely large whenever
r1,...,T¢ € R are distinct. O




IV. Super-real fields

Now suppose P is a prime ideal in C(X), but not
necessarily maximal. Then Ap does not need to
be a field.

For P as above, let Kp be the quotient field of
Ap. |

Definition 11 Let K be a field properly
extending R. K is super-real if and only if K is
isomorphic (via a map fizing R) to some Kp
where P is prime in some C(X).

So every hyper-real field, and in particular every
ultrapower of R, is a super-real field. In fact, we
can restrict our attention to the case where the
underlying space X is compact:




Theorem 14 Let M be a mazimal ideal in
C(X), and let K = Apq. Let P = C%(X) N M,
considered as a z-ideal in C(BX). Then

K= Kp. O

Unless otherwise stated, from now on
X =) is assumed to be compact.

Theorem 15 Let P be prime in C(QQ). Then
there s an xp € () such that

{zp} =[)Z[P].

Proof Let h(P) = ()Z[P]. Then h(P) is
non-empty, since Z[P] has the finite intersection
property. Suppose z3,z2 € h(P) are different.

Let Uy, Uz be neighborhoods of z1, z2,
respectively, such that U; N U, = 0.

Let f1, f2 € C(f2) be such that f;(z;) =1 and
f,l(ﬂ \ Uz) = (. Then f1f2 = 0, but fl,fz ¢ P,
]

contradiction.
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Definition 12 A totally ordered set (P, <) is
semi-ny if and only if it has no (w,w)-gaps:

Whenever P |=s1 < 83 < -+ < ty < t1, there is
some s € P such that for all n, m,

PEs, <s<tpy.

So R is semi-7;, but not 7;.

Theorem 16 Let P be prime in C(Q). Then Ap
18 Semi-1, .

Proof Given sequences (a,) and (b,) in Ap such
that a; < az < --- <13 < t1, inductively choose
fr,gn € C(Q) such that f; < fa< - < g2 < g1,
7p(fn) = an and wp(g,) = t,.

Let £ = zp. We may also assume that
fn(z) <0 < gn(z) for all n.

Since the result is clear if f,(z) < 0 < g, (z) for
all n, suppose (without loss) that f,,(z) = 0 for
all z. |
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f=f+Y (ferr—f)A27F
k

Then f € C(Q) and a = mp(f) interpolates (a)
and (b,). O

Theorem 17 Let Q be compact and let P be
prime in C(Q). Then Kp is real-closed.

Proof A real field K is real-closed if and only if
its complexification K (i) is algebraically closed.

It is easy to see that the correspondence
R Rc={f€C(2,0):|fl € R}

is an inclusion-preserving bijection between the

set of prime ideals of C(Q) and that of C(2,C).
It is also easy to see that Kp(%) is isomorphic to
the quotient field of Ap.(C).




Finally, it is not too hard to see that Kp(i) is
algebraically closed if and only if every monic

p € Ap.(C)[X] has a root in Ap.(C).
Let fo,..., fn—1 € C(©,C), and for z € Q let
Pz = fo(z) + (@)X + - + facr(x) X1 + X"

so p; € C[X].

Using Rouché’s theorem it can be shown that if
21(x), ..., 2n(x) are the roots of p,, listed so that

Rz1(z) < -+ < Rzp(x),

then the functions r, = Rz, are continuous on (.

A similar argument with the imaginary parts s
allows us to define continuous functions by

U R =Dy (rj(:r) + sk ( ))




By definition, for all € 2 there is some 7, k such
that z = rj(z) + sk(z) is a root of p,. Thus,

[Jusx =0
3,k

and since Fg is prime, some u;; € Fc.
Setting a = wp.(rj + si), and p =
mpc(fo) + TR (f1) X +--- + 7rPc(.fn—l))(n—l I

it follows that p(a) = 7p.(uj,k) = 0, and we are
done. O




However, not all properties of hyper-real fields are

shared by all the super-real fields:

Theorem 18 There is a compact space 2, and a
prime z-ideal P in C(Q) such that Kp 1s not
semi-my. O

On the other hand,

Theorem 19 Let X be discrete space, and let P
be a prime ideal in C(BX). Then Kp is semi-m.
O]




V. Automatic Continuity

All hyper-real fields are real-closed fields and
m-sets. For a while it was thought that every
real-closed 7;-field is a hyper-real field. This is
not the case:

Definition 13 A prime ideal P in C(Q) is
exponential if and only if for every g € P with
g <1, it is the case that 1/1n(1/g) € P.

Notice every maximal ideal is exponential.

Definition 14 Let K be an ordered field and let
G be a conver subgroup of K. An exponentiation

on G is a map

exp: G — KT\ {0}

such that for all a,b € G,

1. exp(a + b) = exp(a)exp(b),
2. exp(0) = 1,exp(1) = e,

3. a < b implies exp(a) < exp(b),
4. the range of exp is K+ \ {0}.
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Theorem 20 Let P be prime in C(2). Then
there is an exponential on a convez subgroup G of
Kp. If P is exponential, then we can take G = 2
O

The proof of the theorem involves the
development of an operational calculus for

super-real fields.

Corollary 2 Let K be hyper-real. Then there s
an ezponentiation on K. [

Theorem 21 There are real-closed m; -fields with
no erponentiations in any of their convez
subgroups. Thus, these fields are not super-real.
]




Theorem 22 (Kaplansky, 1949) If || - || is an
arbitrary algebra norm on C(§2,C), then for any
feCQ,0,

Iflle < |IfFIl. O

So, if || - || is an algebra norm on C(€2,C), then
| - || is equivalent to || - || if and only if for all

f € C(52,C) there is an M > 0 such that
I£]l < Ml flla.

This happens, for example, whenever || - || is
complete (by the open mapping theorem).

Kaplansky’s problem: Is every algebra norm
on C(2,C) complete?




Theorem 23 Ewvery algebra norm on C(2,C) is
complete if and only if every homomorphism from
C(Q,C) into a Banach algebra is continuous.

Proof If || - || is not complete, and A is the
completion of (C(Q2,C), || - ||), then A is a unital
commutative Banach algebra, and the inclusion

1:C(Q,0) - A

i1s discontinuous.

Conversely, if B is a Banach algebra and

6:C(0,C) - B

is a discontinuous homomorphism, then

f = |IfIl = max{|| flle, 16()II}

18 an incomplete norm on C(2,C). O
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Theorem 24 There is a discontinuous
homomorphism from C(Q,C) into a Banach
algebra if and only if there is a prime ideal P in
C(Q) such that Ap is normable. [

Theorem 25 (Dales; Esterle) Assume CH. Let
P be a nonmazimal prime ideal in C (2, C) such
that |Ap| = c¢. Then Ap is normable. [

Under which conditions is Ap normable?

Definition 15 Let K be an ordered field
extending R.

Kfm={a:(3neN)|a| <n}

Notice that Ap C K%", and that K fi% is an
algebra.




Open question:

e For which compact spaces 2 and prime ideals P
in C(Q) is K" normable?

Definition 16 Let K be an ordered field. Its
value set is

Lx = (K\{0})/ ~,
where a ~ b if and only if for some n,m € N,
la| < n|b| < m|a.

Theorem 26 (Esterle) If K is an ordered field,
and KA is normable, then x| <c¢, and
|IK| <2¢. O




Theorem 27 (CH) Let U be a nonprincipal
ultrafilter on N. Then -

(RY Uy’

is normable, so there are discontinuous
homomorphisms from C (BN, C) into a Banach
algebra. U

Theorem 28 (Woodin) It is consistent with MA
that every homomorphism from any C(Q,C) into
any Banach algebra is continuous. [

Theorem 29 (Todorcevic) Assume PFA. Then
every homomorphism from any C(Q2,C) into any
Banach algebra is continuous. U




Theorem 30 Assume GCH. Let K be an ordered
field.

1. If |[K| > Ry or |T'g| > X; then K™ is not
normable.

2. If |[K| = Xy, then K™ is normable.

3. If |[K| =R, then [Tk| > 8. O

Theorem 31 Assume GCH. There is a compact
space §) and a non-mazimal, prime z-ideal P in
C(Q) such that Kp is an m-field, |Kp| = Ry and
Tk|=8. O

Theorem 32 It is consistent, relative to the
ezistence of almost huge cardinals, that there is an

ultrafilter U on wy such that if K = R¥! /U, then

IK|=R, and [Tg|=%. O




We close with an open problem:

Let K be any ordered field with |K| = R,

and |[T'x| = X;. Determine whether K*" is

normable.
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