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| §0. Abstract '

We survey some classical and new results re-
lated to the preservation of stationary subsets

of w; between models of set theory.

The new results we mention are part of joint

work with Paul Larson and Boban Velickovic.




| §1. First order log'icl

In (first order) logic we start by specifying a lan-
guage £, and proceed to study the properties of

& _structures.

The language .Z consists of a collection of constant
symbols

Co,Cly- -
relation symbols

Ro, Ry, - -,

each of a specific (finite) arity, and function sym-
bols

f07f17"'7

also of a specific (finite) arity.




| §1. First order logic'

An Z-structure .# consists of a set M and a
collection of elements of M, relations on M, and
functions on M, corresponding to the symbols of

the language.

For example, if R € . is a binary relation symbol,
then the corresponding relation on M is R# C

M x M, and if f € .Z is a ternary function symbol,
then f# . M3 - M.

Although this can be done in abstract, we usually
have in mind a specific collection of structures we
expect to study, and the choice of the language is
intended to reflect some of the features the study

will focus on.



" §1. First order logic'

For example, to study groups, we may start with

the language
gl == {f}7

where f is a symbol for a binary function (intended
to represent the group operation), but we may as
well start with the language

Z2 T {C, f }
where, in addition, we have a constant symbol in
the language (intended to represent the identity of

the group).




l §1. First order logic'

Once the language .Z is specified, we consider the
formulas of this language. These are the state-
ments that can be formed using variables

G REHE & s
the symbols of .Z, the logical connectives
IS ey s K
and the quantifiers
Saly

Given a formula ¢ and an Z-structure .#, we

can formalize the concept “p holds in .#”, or “p
is true in (or, of) .#”. We will skip the formal
definition, but the meaning is the obvious one.




‘§1. First order logicI

For example, consider a language with a binary
relation symbol R and a constant symbol c. In

this language we can form the statement

Vz (zRc).

This formula holds in N if we interpret c as 1 and
R as “is divisible by”. It is false in N if we interpret

c as 0 and R as >, etc.

The meaning of a statement, and whether
it holds or not, may very well change as we
change the structure under consideration.




l §1. First order logicI

A (first order) theory is specified by giving a col-
lection of formulas (the axioms of the theory) in

some language Z.

The models of the theory are the .Z-structures
in which the axioms hold. A deep theorem of
Godel (completeness) states that we can prove a
statement from the axioms iff the statement holds

in all the models of the theory.

Group theory and field theory are examples of

first order theories. First order refers to the fact
that we only allow quantification over elements

of the structure, but not over its subsets. Thus,
even though most of group theory deals with the
relations between groups G and their subgroups,
the formal language itself does not allow us to

express statements about subgroups of G.




l §2. Set Theory I

We work in the standard system of set theory
(usually referred to as ZFC, Zermelo-Fraenkel with
the Axiom of Choice). This is a first order theory
in the language .£ = {€} whose only symbol is one
for a binary relation, although the specific details
of this theory are not required for what follows.

It suffices to know that the axioms of ZFC describe
rules of set formation from which one can deduce

that

1. There are (infinite) sets.

9 The collection of all sets is closed under basic

operations, like taking unions, power sets, etc.




l §2. Set Theory I

These rules of set formation are powerful enough
that for any mathematical structure (to date), e.g.,
groups, Banach algebras, manifolds, etc, there is
a surrogate set (i.e., an isomorphic copy) built up
from pure sets by means of these rules. (This is a
small white lie: Categories can be represented by
means of pure sets but are not sets themselves.)

This is (mostly) what is meant by the claim that
set theory provides an adequate foundation for all

of mathematics.

Qet theorists investigate the properties of sets
(pure or coming from other mathematical disci-
plines) that these rules determine. Part of this
investigation consists of studying those properties
that the rules are not strong enough to decide.




|§2. Set Theory.

For example, none of the following questions are

decided by the axioms of set theory:
_ The Continuum Hypothesis CH.

. Questions of automatic continuity in Banach

algebra theory.

. Questions about the Lebesgue measurability

of certain sets of reals.

Let us mention that one of the axioms of ZEE:
regularity, is equivalent to the claim that € is
well-founded, i.e., there is no infinite descending

€-chaln

Top 21 2 T2 ...
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‘ §3. Ordinals I

Definition 3.1. X is transitive iff any element of
X is a subset of X:

reye X =>zeX.

Definition 3.2. « is a (von Neumann) ordinal iff

1. « is transitive, and

2. Every element of o is transitive.

If o is an ordinal, then € is a linear order of «.
By regularity, (o, €) is well-ordered, i.e., every
nonempty subset of a has an €-first element.

The Aziom of Choice is equivalent to the statement

For every X there is an ordinal o and a

bijection f : X — «.

11




| §3. Ordinals I

Notice that the elements of ordinals are ordinals
themselves. Any two ordinals are €-comparable
(i.e., if a and (3 are distinct ordinals, then either

a € B or B € a). Thus, the class ORD of all
ordinals is well-ordered by €.

Given X, the smallest a such that there is a
bijection f : X — «a is called the cardinality of X
and denoted | X|.

For example:

e () is an ordinal.

e If o is an ordinal, a + 1 := a U {a} is an
ordinal. It is the smallest ordinal 3 such that
a € f.

12



‘ §3. Ordinals I

We can identify the natural numbers with the finite

ordinals, thus
e 0=0,
o 1={0},
o 2={0,{0}},

e In general, n+1={0,1,...,n}.

We denote by w the set of finite ordinals; w 1s an
ordinal, and is the set-theoretic counterpart of the

natural numbers N,

w = {0,{0},{0,{0}},...} = IN|.

13




There are many countable ordinals:

QLZ“wmw+Lw+Z”ww+w=wZ

w2+1,...,w3,...,w2,...

Cantor showed that for every X, |2(X)| > |X],

so there is a (first) uncountable ordinal, we denote

1t by w1i-




Another description of w;:

Consider the collection Y of all well-orders (N, <)
of the natural numbers. Define an equivalence
relation on Y by

<12y iff

there is a permutation 7 : N — N such that

m(<1) =<2

15



Let X =Y/ 2. Define a relation < on X by:
[<1] < [<o] iff

there is an injection p : N — N sending <; to a
proper initial segment of <s.

This is well-defined (i.e., it does not depend on the
representatives of the equivalence classes) and is a

linear ordering of X.

In fact, (X, <) is well-ordered. X is uncountable,
and for every a € X,

{beX:b<a}

is countable.

Then w; = |X| and, in fact, (X, <) is order-
isomorphic to (w1, €).

16



|§5. Club sets'

There are three kinds of ordinals:

o (.

e Successor ordinals: Those of the form a + 1
for some a.

o Limit ordinals: Those that are not successors.

For example, w,w + w,w; are limit ordinals.

For ordinals «, 8, we write a < B iff a € 3, so an

ordinal is the set of its predecessors:

a={f:8<a}.

17



|§5. Club sets.

Then (w1, <) is a linearly ordered set, and we con-
sider it a topological space with the order topology:

Basic open sets have the form
e a={p:8<a}(a<w),or

e wi\(a+1)={B<w:B8>a}

Notice that if o is not a limit ordinal then {a} is

open.

If o is limit, & is open, and o € &, then & contains

an interval (3, a] for some (B < .

(It follows, for example, that a = {5 : 0 < o} is
compact iff o is not limit.)

18



l §5. Club sets I

We now introduce a key notion that will correspond g
to the intuitive idea of a large subset of wi. A good
analogy is the concept of a full measure subset of

0,1].

Definition 5.3. C C w; is club ift

1. C is closed in the order topology (i.e., if a > 0
is limit and C N « is unbounded in «, then

a € C).

2. C is unbounded (in the order of wy).

Notice that X C w; is unbounded iff X is uncount-
able, because (by the Axiom of Choice) a countable

union of countable sets is countable.

19



|§5. Clﬁb setsI

We have the following facts:
The intersection of two clubs is club.

In fact, the intersection of countably many

clubs is club.

If AC wq,let A’ = {8 € w;: Bisalimit point
of elements of A}. If C is club, then C" C C

is club.

example, the following sets are clubs:

wi.

W} = {a < w; : @ is a limit ordinal }.

W ={a < w; : ais a limit of limit ordinals e

etc.

20



} §5. Club sets '

e IfCisaclub,C ={op < a1 <oz < o )
then

{ﬂ<w1:a5=,8}

is club.

o If f:w; — wi, then

{B<w:Va<B(fla)<p)}

is club.

21



| §6. Stationary sets I

Together with the intuitive notion of big sets, we
have the intuitive notion of medium sized sets (in
the measure theoretic analogue, these correspond
to sets of positive measure).

Definition 6.4. S C w; is stationary if SNC # ()
for any club C.

Any stationary set .S is unbounded, and in fact
if S is stationary and C is club, then SN C is

stationary.

The first significant use of the Axiom of Choice in
the study of w; comes in the following result:

Fact 6.5 (Ulam). There are disjoint stationary

subsets of w;.

22



' §6. Stationary sets '

That the use of Choice is essential here can be

argued as follows:

From natural extensions of ZFC one can show that if
M is the collection of all sets constructible using reals
and ordinals (M is usually called L(R)), then

o M contains all sets relevant to analysis.

e All subsets of the reals in M are Lebesgue mea-

surable.

e The structure (M, €) satisfies all the axioms of
ZFC except the Axiom of Choice, and also satisfies
a weak version of Choice, DC, sufficient for all of

classical mathematics.

e Given any X C ws, if X € M then either X or

w1 \ X contains a club.

23



‘ §6. Stationary sets I

In fact, from Choice one can prove

Fact 6.6 (Ulam). Any stationary sets S can be
partitioned into wy many disjoint stationary sub-

sets.

Proof: Any a < w; is countable, so we can fix for

each o € S an injection ¢, : a — N.

For each oo < w; and n € N let
A*={B€S:a<pand g(a)=n}

24



| §6. Stationary sets I

An Ulam matrix.

For each n, notice that if a # v then A5 N AY = 0.

Also, UnAg={ﬁES:5>a}=Sﬂ[a+1,w1)

is stationary.

Then, for any o, there is n, such that LSS

stationary.

(Proof: If T, is not stationary, n € N,and T =V Tn,
then T is not stationary: Let Cn be club, C, N1y = 0.
[leta@ =T E T ikhenf CARMES g. D)

25



| | §6. Stationary sets'

There must be some n such that for an uncountable

set A of a, n, = n.

Then for all a € A, all the AS are stationary, they
are all disjoint, and they are all subsets of S. O

25



l §7. Models of set theory.

We will use the phrase model of set theory or,
simply, model to refer to a specific class of models
M of ZFC. These models must, in addition, satisfy
the following three requirements:

e The interpretation € of the membership
relation is membership, i.e.,

eM=en(M x M).

e M is transitive.

e ORD Cc M.

For example, in 1940 Gédel introduced the class
L of constructible sets. There is a formula ¢ such

that

L={z:p(z)}
1s a model of set theory, and such that given any
model M, L C M.

26



l§7 . Models of set theory'

In 1963 Cohen (and then Solovay) showed that
given any model M and any partial order P € M
(called a forcing notion) we can form a new model
MP such that M C MP and the (order theoretic)
properties of P determine which statements hold
in MP. '

This method (called forcing) is incredibly flexi-
ble, and has allowed set theorists to show that
many statements (like CH) are neither provable
nor refutable from ZFC.

[I am being slightly imprecise here: If M is the
collection V of all sets, obviously there is no bigger
model V¥. We can still make sense of forcing in
this case, but the formalization is quite technical.]

27



|§7 . Models of set theory'

In what follows, we are mostly interested in pairs
of models M C V such that the ordinal w; is the
same from the point of view of M as from the

point of view of V.

The point is: An ordinal a is uncountable iff there
is no surjection f : w — «a. So for an ordinal o
to be w; from the point of view of M (we write

a = wM) it is necessary that there is no such

surjection f in M. Of course, such an f may very
well exist in V, since V' contains more sets. For
example, from natural extensions of ZFC one can

show that w{ is countable.

29



‘ §7. Models of set theory'
1%

So, suppose M C V are models and wi’ = wy .

o If C CwM is club in M, then it is club in V.

e On the other hand, if S is stationary in M, S
may or may not be stationary in V. In fact,
given any S stationary in M there is a partial
order Pg € M such that

P . .
— wM = wM and in fact, given any f:w —

ORD, if f € MF, then f € M.

_ S contains a club in MFs.

Let T be the complement of S, T' = wi’ \ S.
We have seen (from Ulam’s theorem) that T
may also be stationary. But clearly TN.S = 0,
so T is not stationary in MT*s.

30



l§7. Models of set theory I

e Nevertheless, if S € M, S is stationary in V,
S=AUB, A B € M, then at least one of
A, B is stationary in V. Similarly for countable

unions.

Can it be the case that for every S C wM, S € M,
either S or wM \ S contains a club in V? [This
happens when M is the ‘choiceless’ model L(R)
that we mentioned earlier.|

NO. Notice that the Ulam matrix we discussed
earlier can be built in M (so all the sets A2 are in
M) but it can be analyzed in V. So:

Given any S € M, S stationary in V, there
are w; many disjoint subsets A, C S,

a < w1, such that each A, € M and A, is
stationary in V.

30



|§7 . Models of set theor.y'

But, in general, the enumeration
o = ( Ag:a < w1 )

may not be in M. In fact,

e It can be the case that no infinite subsequence
of o/ is in M.

e It is not even clear that there is a partition of
S into w; many pieces that belong to M and

are stationary in V', even if the enumeration
itself is not in M.

31



|§7. Models of set theory'

Notice that if a countable subset B of w} belongs
to V but not to M, then there are reals in V' that
are not in M. Denote by RM and RY the set
of reals from the point of view of M and of V,

respectively.

So suppose now that R® = RY. Ulam’s result
tells us that for any S € M that is statiohary in
V, there is (in M) a partition of S into countably
many disjoint subsets such that all of them are
stationary in V. Can we find w; many?

A B I > . . L e R ey e P U W ey ri; T TR Ty = -
T R R L e A e T i AR R LR L A S AR i W DT S0 e b7 R IR Ve

Eobe T
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I §8. Ramsey theory.

Given f :N—n,neN

(i.e., f;N—>{0,1,...,n——1}),

there is some i < n such that f~1({¢}) is infinite.

Infinite Ramsey theory is concerned with general-
izations of this observation.

Definition 8.7. Given A C w1, let
[A? ={(e,8) EAXx A:a< (3}

Theorem 8.8 (Ramsey). Given any n € N and
any f : [N]? — n, there is i < n and an infinite
H C N such that

V(a,b) € [H]* (f(a,b) =9).

33



I §8. Ramsey theory .

A natural question to ask is whether the same
holds of wy, i.e., given f : [w1]®? — 2, is there
H C w; uncountable, and an 7 < 2 such that

V(e B) € [H] (f(e, 8) = 1)7

In 1965, Paul Erdés, Andras Hajnal and Eric
Milner gave a strong form of a negative answer,

assuming CH.

In 1985, Stevo Todorcevi¢ gave a weak form of
their negative answer without any additional as-

sumptions.

Last year, Justin Moore gave a stronger form of

Todorcevié’s negative answer.
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l §8. Ramsey theory.

Using the CH argument, we can show:

Fact 8.9. If CH holds in M C V and RM — RY,
then any S € M that is stationary in V can be
partitioned in M into wy many disjoint subsets all
of which are stationary in V.

Using Todor¢evié’s original argument we can show:

Fact 8.10. If M C V, wM = wY, then any
S € M that is stationary in V can be partitioned

in M into countably many disjoint subsets all of
which are stationary in V.

35



| §8. Ramsey theory I

On the other hand, it is not always possible to find
such a partition into w; many pieces:

Fact 8.11 (Larson). Given any model M, there 1s
aP € M such that w! = w{WP but for any sequence
@Sarleg= wM) € M of disjoint sets, at least one
of them is not stationary n MP.

It is still open whether such a partition must exist
whenever RM =RV

37



§9. BPFAI

Let’s now consider a different situation, where
M CV,wM =w) and all stationary sets in M

are stationary in V.

Definition 9.12. Given a set X, the transitive
closure of X, tc(X), is the smallest transitive set

Y such that X € Y.

For A a set, let |JA = |J{a:a € A}. One can
show that

te(X) = {X}uxul JxuJJxu....

Definition 9.13. H,, = { X : [tc(X)| L w1 }.

38




[59. BPFAI

A statement (z,y) is bounded iff it is first order

in the structure

(te({z,y}): €)-

Bounded statements ¢ have the property that
their meaning is absolute, SO if z,y € M CV, then

o(z,y) holds in M iff o(x,y) holds in V.

For example, the following are bounded state-
ments:
e C is closed and unbounded in o.

e f is a function, dom(f) = w, ran(f) Cw + 1.

e o is a limit ordinal.
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159. BPFAI |

We will not define properness. It is a technical
condition on a partial order P € M that guarantees
that all stationary sets in M are stationary in MT.

Definition 9.14 (Goldstern, Shelah).
The Bounded Proper Forcing Azxiom BPFA holds
in M iff
for any z € H,,, and any bounded statement (-, -),
if there is a proper partial order P € M such that
in MP,

there is a y € H,,, such that ¢(z, y) holds,

then there is such a y already in M.

39



§9. BPFAI

Intuitively, one can think of BPFA as a statement
about the richness of the model M, in the sense
that many (existential) statements that are con-
sistent (and hold of extensions MY of M where P
is proper) are actually true in M, i.e., M already
contains witnesses to all of these statements.

BPFA is not a theorem of set theory, so there are
models where it is false. Under natural assump-
tions, there are models where it is true. BPFA has

many applications in combinatorics, set theoretic

topology, group theory and analysis. In essence,
BPFA is a statement about subsets of w;.

How much does this additional assumption deter-
mine about the models that satisfy it?
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59. BPFA'

Definition 9.15. w9 is the first ordinal such that
lwa| > wy. Given a model M, we write w)! for the
ordinal that is wo from the point of view of M.

The standard method to build a model of BPFA
starts with a model M and a carefully chosen
P € M such that BPFA holds in M¥. Moreover,

P P
wM =wM | but w < WM (and much more).

Theorem 9.16 (Velickovi¢, C.). Assume M CV
are models of set theory such that w = w}Y and
BPFA holds in both M and V. Then either w)! <

wY or else every subset of wY inV belongs to M.

The proof of this result uses game theoretic argu-
ments, and methods recently introduced by Justin

Moore.
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59. BPFA'

The proof allows us to define a bijection p: R —
w2, SO
BPFA = |R| = wa,

a result previously shown by Moore.

If M C V, BPFA holds in M and V but w¥ > w?,
then in fact wd < wy . Here, ws is the first ordinal

such that |wz| > wy. It is open precisely how big
wy must be in this case.

43



9. BPFAI

Let me close by mentioning that even though our
argument is different, Moore’s original method
to prove |R| = ws from BPFA codes reals using

(among other tools) a sequence of disjoint station-

ary sets.

This was the original motivation for the results
on preservation of sequences of stationary sets we
mentioned earlier.
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