A Brief Introduction to Forcing

Andrés Eduardo Caicedo

University of Califormia, Berkeley




I. Statement of Purpose

Forcing is a method for establishing consistency
results (for, say, combinatorial statements with
respect to some first order axiomatization of set
theory).

The idea is that if a model M of set theory does
not satisfy some statement, it may be due to lack
of witnesses. So forcing is a method for adding
these witnesses to the model, and still preserving
the fragment of set theory the model satisfies.

For example: Suppose M is countable.

o If M = —CH, then (in V) there is a bijection
between

RM = {y: M y€R}

and

w{"‘—_—{T:Mt-——TEqu},

but no such bijection belongs to M.




Since M is countable, there are lots of reals
with no representative in M—z € M is a real
in the sense of M if, say,

MEz:N— {0,1}.

Maybe CH fails (in V'), but M = CH, for the
simple reason that not enough reals are in M.

If M |= 2 and B are L-structures (for some
first-order language £), and

M =9 =B but A% B,

it may well be that 2 = B, but M does not
contain any isomorphism between them.

Etc.




It may also be that the background theory we are
working in (usually ZFC or an extension of ZFC
by large cardinal axioms) simply does not decide
the questions we are asking. So forcing is the
method for making this explicit, hence we know
that some ‘theorems’ cannot be proven.

For example:

e Whitehead Problem: Let G and H denote
infinite abelian groups. G is free iff it has a

linearly independent set of generators.
G is a W-group iff for any surjective
homomorphism ¢ : H — G with kernel Z
there is a homomorphism 7 : G — H such
that ¢ o 7 = id.
Is every W-group free?
Shelah arrived at proper forcing by trying to solve

this problem. ZFC is not enough to decide the

Aalswel.




o Kaplansky’s Conjecture: Let X be a
compact Hausdorff space, and let B be a
commutative Banach algebra.

Is every homomorphism ¢ : CcC(X)— B

continuous?

Woodin showed that 7FC is not enough to decide
the answer, not even restricting ourselves to the
case X = [0,1].

o Assuming the countable version of the axiom
of Choice (enough for most of classical
analysis) but not its full extent—so we cannot
carry out the usual construction of Vitali’s
nonmeasurable set—, 18 there a
nonmeasurable subset of R?

Solovay showed that 7FC is not enough to know
this.



Forcing is the way of getting all these results.

A partial, but useful analogue occurs in algebra.
Given a field K and an irreducible polynomial
p € K|z], it may happen that the equation

p(z) =0
does not have solutions in K.

But there is a standard way of extending K so

such a root is added: We consider K|z]/(p).

We then define an ‘interpretation’ of the field
operations inside this space, and an interpretation
of the elements of K, so X = K|[z]/(p) can be
considered an extension of K. Also, if a is the
class of z in I, then

K E p(a) = 0.




This is a good analogue (i.e., we want to copy
some features of this example):

e K so constructed is in a precise sense minimal
with respect to the properties of extending K
and having roots for p.

e Due to this minimality, we know ‘in K’ what

properties is K going to have (i.e, we know its

first order theory with parameters).

This is because we have a way of talking ‘in K’
about such properties. For example, (first order)
statements in /C about a can be routinely
converted into (second order) statements in K

about the ideal (p).




This is a bad analogue:

e Most technical difficulties in set theory come
from the fact that we work in a first order
framework, but want to talk about second

order properties.

In the context of forcing, the role of K is played
by some model like M in our examples above, it
is called the ground moaodel; the role of the ideal
(p) is played by the generic filter G, and the
role of £ = K(a) is played by the generic
extension M|G].

A careful analysis must be made to convert 279
order statements about the genéric and the
generic extensions into 1% order statements about
the ground model. We need such a conversion,
since for all we know, we could really be working
in V (not in a tiny countable model), and then the
generic extensions of V' would be proper classes,
but our framework (ZFC) is first order, and things
like quantification over proper classes are not

allowed, and in general do not even make sense.




o In the case of fields, any ‘minimal’ extension
of K is isomorphic to K. With forcing that is
never the case: If two forcing extensions are

" isomorphic, then they are in fact equal.

Moreover, it is not even true that forcing
extensions are elementarily equivalent (some
technical requirement on the forcing is
necessary, for example, weak homogeneity).




II. The Forcing Machinery

We will work in V' and talk about generic
extensions of V until the last section (on
metamathematics).

There are two standard and equivalent
approaches to foreing: via Boolean algebras and
via partial orders. We adopt the latter.

Definition 1 1. A partially ordered set (a
notion of forcing) P—really, (P, <p,1),
consists of

o A set P of conditions.

o A relation <p on P x P which is reflexive
and transitive and such that 1 is
MazTimum.

2. Let p and q be conditions. p extends g (or is
stronger) iff p < q.

3. p and q are compatible iff there isr, r < p
and r < q. We write p|| q. Otherwisc. they
are incompatible, and we write p L q.




We can also ask of <p to be antisymmetric, if we
want. In examples more elaborated than the ones
we will present some simplifications arise from our
more generous context. We can also eliminate the
clause on 1 without any gain of generality—and,
again, adding complications in some contexts.

Examples:
e P=2<v,p<qiffp2yq
In this case, 1 = . p and g are compatible iff
pU q is a function.
o P=Coll(wy,¢):={fiwi—c:|f|<No},
p<gqilfp>Dgq.
o (Solovay’s random forcing)
P={X C R: X is Borel measurable and
u(X)>0},p<qiff pCq.

In this case, p || ¢ iff pN ¢ has positive measure.
Here. 1 = R.
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Why does p < q denote that p ‘extends’ g7 This is
the so called Western convention. The Eastern
convention (mainly used by Shelah and his

collaborators) uses p > g.

The reason is that in the Boolean algebra context
< coincides with the Boolean algebra ordering.
And there is a canonical order-preserving
embedding of notions of forcing into complete
Boolean algebras (Stone representation theorem).




Definition 2 Let P be a notion of forcing. A
subset D C P is dense iff for every p € P there 1s
q € D with q < p.

Examples:
e D={f€2<¥:n¢cdomf} is dense in 2<“.

o D={f:a€ranf}is densein
P = Coll(ws, ¢), for any a < c.

e D={X:X is compact and pu(X) >0} is
dense in Solovay’s random forcing.

Definition 3 F C P is a filter iff
o 1€ F.

e For everyp,q € F, thereisr € F, r < p,

r<g.
e For everyp € F, if p<gq, thenq € F.




Example:

If F is a filter in 2<“, then |} F is a function,
since any two elements of F are compatible.

Definition 4 Let ® C P(P) be a collection of
dense subsets of P. We say G C P is ®-generic
ioff G is a filter and meets all the elements of ©. If

D ={DCP:D is dense},

we say G is P-generic (over V).

Really, the definition is relative to a given nice
model M of set theory such that ©,IP € M. Then
we say, for example, that G is IP-generic over M
iff G is a filter and meets every dense subset of P
which belongs to M.




Theorem 1 (Rasiowa-Sikorsky) Let D be a
countable collection of dense subsets of P. Then,
for every p € P, there is a D-generic filter G with

p € G.

Dem. Define p > po > p1 > ... such that if
D={Dp:nEW},

then p,, € D,. Let

G={qeP:3n(g2ps)}. U

Notice that this theorem for P = 2<“ or w<¥ is

just an instance of the Baire category theorem:.




Examples:

e Let Q be a countable dense linear order
without endpoints. Any order isomorphism
g : Q — Q induces a ®-generic filter for P,
where

P={f:Q— @Q: fis order preserving
and Ifl < No}

and ® ={D,;:q€Q}U{D" :r € Q}, where
for each ¢ € Q and r € Q we let

D,= {peP:gqe€domp} and
D'= {peP:re€ranp}.

Notice that ® is a collection of dense sets,
and G={pCyg:|p|l < No} is D-generic.
Conversely, for any ®-generic filter G,
UG : Q — Q is an isomorphism.




In general, the Rasiowa-Sikorsky theorem cannot
be improved to allow for w; dense subsets of P.
For example:

o Let

P = Coll(w,w;) ={piw— wi :|p| <No}

If G is D-generic, where D € D iff

D= {p:n€domp} (somen € w),or

{p:a€ranp} (some a € wy),

then |JG : w — w; would be onto, a
contradiction.

If P is Solovay’s random forcing, and there
are D-generic filters for any collection ® of w,
dense subsets of P, then CH is false. This
follows by an easy modification of the proof of
the following fact:




e There are no generics for Solovay forcing IP.
I.e., no filter G P-generic over V exists (in V).
This is because, if G is a counterexample,
then ()G is nonempty, because the compact
sets are dense. But, for each r,

D.={XeP:r¢ X}
is also dense, so r ¢ [} G.

Similarly, there are no generics for 2<“: Let

D,= {p:m € domp}
DI= {p:p¢f}

for each n € w and f € 2“. Since the D,, and
the D are dense, if G is 2<“-generic, then
UG is a function with domain w, say f; but
then we get a contradiction, by considering

any element of G N D/.




o As a matter of fact, for most notions of
forcing P, no P-generics exist. To ensure this,

it is enough that P is non-atomic:

Vr3py,p2 <7 (p1 L p2)

There is also a characterization of those P for
which we can prove that there is a collection
of w; dense subsets such that no generic
meets all of them. Such P are not
stationary-set preserving.




Forcing is the means to extend the universe by
adding a generic subset G to it. The examples
above show that in general this extension is

nontrivial (i.e., we are really adding something).

Fix a notion of forcing P. We want to define what
V[G] is, for G a filter P-generic over V.

But since G ¢ V, we introduce a language, to be
able (in V) to talk about it. It is the language of
set theory, augmented with constant symbols:

Definition 5 A P-name is a P-name of rank
< a for some ordinal o, where T i3 a P-name of
rank < a iff

T={(ps,pi) :1 €1}

for I an index set, and for eachi € I, p; € P and
pi 8 a P-name of rank < a.

For example, § is the only P-name of rank 0. So
{(1.0)} is a P-name of rank 1.




Definition 6 e Let G C P and 7 a P-name.
e ={pc:Ip€G((p,p) €T)}

o VI[Gl={1g:7 154 IP’-hame}.

The first feature of field extensions we mentioned
was minimality.

Lemma 1l If1€ G CP, then V C V[G],
G € V[G] and any model of set theory extending
V and containing G extends V[G].

Dem. The last part of the lemma is clear, from
the definition of V[G]. We define a special class of
names to show the first part.

Definition 7 e Letx € V. The canonical
name for x 1s

z={(L,9):y€ex}
e The canonical name for the generic s

G =iiphpEaplciRy):

By induction, £g = z for any z,80 G5 = G. U




We would like to know the theory of V[G] (with
parameters) inside V itself. Of course, some
restrictions are necessary, since G ¢ V, soin V we
cannot know the answer to all the questions of
the form ‘p € G?’ for p € P. So we settle for the
second best thing.

Definition 8 Letp € P, let 11,..., 7, be

P-names, and let o(7) be a sentence in the

language of forcing. We say that p forces ¢(7),
p Ik ©(7), iff

VIG] E ¢[nia,-- -, ™al

for all G P-generic over V such that p € G.




For example, if V |= ¢[Z] for some X; statement
¢ in the language of set theory, then

11k (,0(531, oo ,Cf,‘n).

Notice that the definition of the forcing relation is
second order, since it quantifies over all possible
P-generic extensions of the universe. So it is not
clear that it is definable inside V. In fact, it
cannot be, for Tarski’s undefinability of truth
theorem. Again, we settle for the next best thing:

Theorem 2 For each n, IF|y_ is (first-order)
definable inside V.




Remark on the Proof:

We proceed by informal induction on n. For each
n, the proof proceeds by induction on the
complexity of the formulas in the forcing
language. For example, p I - iff

Vg <p(qlf ¢).

The most complicated instance of the induction is
the atomic case—A feature which basically
disappears when doing forcing in recursion theory.

Moreover, ‘truth is continuous’ among generic
extensions:

Theorem 3 Let G be IP-generic over V, let

T1,--.,Tn be P-names, and let o(7T) be a sentence
in the forcing language. Suppose that

V[G] l= (,0[’7‘1(;, 0 6 ,Tng].

Then there is p € G such that p I+ (7).

Of course, this machinery is not veryv useful if
(V|G], €) is just a partial order.




Theorem 4 V[G] = ZFC.

Dem. (Sketch)We check some of the axioms.

V[G] = Extensionality: By definition of 7g.

V[G] k= Foundation: If 716 3 72 3 ..., then
the ranks of 71, 72,... form a decreasing
sequence of ordinals in V.

V[G] |= Pairing: Given names 7 and p, let

p={1,7),(1,p)}
Then pe = {7, PG}
V[G] k= Infinity: w = &g € V[G].

V[G] = Union: Let z € V[G], say = = 7¢ for
some name 7. Let

p={ (p,u): therearegq,r € Ps.t. p<r,
p < q and for some name o,

(r,p) € o and (q,0) € T }.

Then pg = UJz.




o V |= Comprehension: Let x € V[G], say
T = Tg, and let p(y) be a formula in the
language of set theory. We need to see that

y={z€zx:p(z)} € V|[G].
Let
p={(p,n) EPxdom7:pl ( €7Ap(1)) }-

Then
y=71q. U




ITI. Models of Set Theory

Now that we have developed this wonderful
machinery for adding sets to models of set theory,
and still get such models, we need to make sense
of it. After all, V being the universe of sets,
formally there is no such thing as a generic

G¢V.

There are several ways of making sense of the
above construction of V[G]: Boolean valued
models, countable models of fragments of set
theory, and a syntactic approach. We expand on
the countable models approach and touch briefly
on the others:




1. Boolean Valued Models:

Classical models are models with truth values in
the trivial Boolean algebra {0,1}. Here, we
consider models with ‘truth values’ in a complete
Boolean algebra.

We mentioned above that there is an assignment
of such algebras to notions of forcing. If B(PP) is

the algebra assigned to P, we define a map from
formulas to elements of the algebra,

p(7) = [(P)]-

Using this map, a B(P)-valued model VB(®) jg
defined. It can be shown (from the consistency of
our background theory ZFC) that

T={e(1): [ ] =1}

is a (classical) consistent theory extending ZFC
and containing the theory of V' with parameters.
By carefully choosing P, interesting statements
can be made part of 7. Hence. we can think of
VEB(P) as the formal manifestation of V[G].




2. Syntactic Approach:

It is directly verified that 1 [F ¢ for each axiom ¢
of ZFC. It is also verified that given any p € P,

sz{SO:P'h'SO}

is a classical consistent theory and is deductively
closed. More carefully, for each n it can be verified
that T, », the restriction of T}, to X, -statements,
is consistent. Again, judicious choices of P lead to
interesting statements contained in 7.

The problem with these approaches is that part of
what has to be proven is that the resulting
theories are first order, i.e., we must verify the

axioms of predicate calculus and its rules of
inference together with ZFC and whatever
combinatorial statement we are aiming at.




3. Standard Models:

Definition 9 A model of ZFC or a sufficiently
large fragment of it is called standard iff

1. it has the form M = (M, €), i.e., the
interpretation of € is €[ p, s, and

2. M is transitive.

Recall:

Definition 10 A set = is transitive iff every

element of = is a subset of x.

It can be justified in a careful way the choice of
words ‘standard’ and why we restrict our
attention to such models.

Instead of trying to give such a justification, I will
just mention a possible road that heads towards
this definition.




The idea is that (by Gédel’s completeness
theorem—and compactness) if, say, ZFC is
consistent, then there are many essentially
different models of it. We want to separate among
them those which resemble the universe of sets in
a closer way (so, by strenghtening the logic, we

hdpe to isolate those statements which must hold
in V).




Possible criteria:

We give a list of requirements, each subsuming the
previous ones. We say that a class 7 of models
satisfies a statement iff every model in 7 does.

e Soundness: T is £%-sound iff any
Y1-statement of arithmetic valid in 7 is true.

We want our models to be X9-sound.

X.]-soundness of a theory is strictly stronger than
just consistency. Hilbert’s finitism centered
around statements of this logical complexity.
That’s why we want at least such soundness: our
models should be correct for “real” arithmetic
statements.




But it cannot be enough. We want, in particular,
to have models which are correct about all
arithmetic statements.

e w-completeness: T is w-complete iff for every
model

A€eT,

N4 = o, where N4 denotes the interpretation

of the natural numbers inside A.

An w-model is one which is w-complete. We
want to center on w-models.

Once we have arithmetical correctness, the next
step is to look at second order arithmetic.




e well-foundedness:

A B-model is an w-model M such that for
any X1-statement of analysis ¢,

ME iff @ is true.

Theorem 5 (Simpson) Given a model M of set
theory,

(w, P(w), +, %,0,1, <)M is a B-model

iff (Hu,, €)M is well-founded.

Remark: In fact, Simpson exhibited a fragment
of second order arithmetic, ATRy, such that if A
13 a model of ATR, then the well-founded trees (in
the sense of .4) are in correspondence with the
elements of a model M of a weak fragment of set
theory + “Every set is Hereditarily Counta,ble”T

Our last criterion is a natural strenghtening of the

theorem above: We want our models to be

well-founded.
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Recall:

Definition 11 A binary relation < is
well-founded iff there are no infinite descending
chains in <, t.e., for no sequence xgy,x1,... in the
field of <,

e < T2 <71 < Xp.

A structure M in the language of set theory LST
is well-founded iff €M is.

So we ask of our models to be well-founded. This
is good, besides of the correctness reasons

suggested above, because well-foundedness gives

some kind of canonicity, which leads to our
definition of standard:




Theorem 6 (Mostowski Collapsing Theorem) An
LST-structure X such that

X [ Extensionality

18 well-founded iff it is isomorphic to a transitive
set M, i.e.,

(X7 EX) = (M, ErJ\AXM)'

Moreover, such isomorphism is unique. In

partz'cular

1. Transitive models of set theory are rigid, i.e.,
their only automorphism is the identity. In
fact, this holds for any transitive set.

2. If X is well-founded and Y C X is such that
€Xlywy = Elyxy and Y is transitive, then
the isomorphism is the identity on Y.

3. Any LST-structure X such that €X= €]y, x
18 1somorphic to a transitive set.




Dem. Given well-founded X |= Extensionality,
define inductively a map r: X — V (using
Foundation in V') by

m(z)={7(y): X Fyecz),
and let M = 7“X.

Uniqueness follows from considering a minimal
counterexample. []

Remark: The theorem holds as well for proper
classes X, in the sense that there is 3 transitive
proper class isomorphic to X via the definable
isomorphism described above, with the proviso
that € is set-like, i.e., that

{reX: X Ezey)

18 a set for every y € X.

What we need to show now is that we haven’t

imposed too many restrictions on what we want

our models to be.
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Of course, if our initial theory is just ZFC, we
cannot hope to prove that there are transitive
models of it. But for our consistency results that
is not necessary: Models of any finite fragment
suffice.

Theorem 7 (Reflexion) Given any finite list S
of sentences that V satisfies, and any ordinal o,
there is B > a such that

Vs ES.

Dem. We just formalize the Lowenheim-Skolem
argument inside ZFC. Let S’ be the closure of S
under subformulas, and take 3 > o such that V3
is closed under Skolem functions for the formulas
inS’. O

Remark: If PowerSet ¢ S, any H,, n regular,
works as well.




So, suppose we want to prove CH, say, is
consistent relative to ZFC. We look for a forcing
P such that in our informal description given

above, V[G] = CH.

For any finite S C ZFC + CH, the proof that
V[G] = S only uses finitely many axioms of ZFC.
Say, R C ZFC is enough. Find 3 such that

Vs I=Rand]P’€Vg.

Let X < (V3,P) be a countable elementary
substructure. Take its Mostowski collapse, and
call it M. Let P be the image of P inside M.

Then P(P)M is countable, so there is a filter G
P-generic over M. Since

METR
and therefore
M =11+ CH,
MIG] E S.

Hence, if ZFC is consistent, so is ZFC + CH.
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